Parasites form an integral part of food webs, however, they are often ignored in classic food web theory or limited to the investigation of trophic transmission pathways. Specifically, direct consumption of parasites by nonhost predators is rarely considered, while it can contribute substantially to energy flow in food webs. In aquatic systems, chytrids constitute a major group of fungal parasites whose free-living infective stages (zoospores) form a highly nutritional food source to zooplankton. Thereby, the consumption of zoospores can create an energy pathway from otherwise inedible phytoplankton to zooplankton ("mycoloop"). This parasite-mediated energy pathway might be of special importance during phytoplankton blooms dominated by inedible or toxic primary producers like cyanobacteria, which are on the rise with eutrophication and global warming. We theoretically investigated community dynamics and energy transfer in a food web consisting of an edible nonhost and an inedible host phytoplankton species, a parasitic fungus, and a zooplankton species grazing on edible phytoplankton and fungi. Food web dynamics were investigated along a nutrient gradient contrasting nonadaptive zooplankton species representative for filter feeders like cladocerans and zooplankton with the ability to actively adapt their feeding preferences like many copepod species. Overall, the importance of the mycoloop for zooplankton increases with nutrient availability. This increase is smooth for nonadaptive consumers. For adaptive consumers, we observe an abrupt shift from an almost exclusive preference for edible phytoplankton at low nutrient levels to a strong preference for parasitic fungi at high nutrient levels. The model predicts that parasitic fungi could contribute up to 50% of the zooplankton diet in nutrient-rich environments, which agrees with empirical observations on zooplankton gut content from eutrophic systems during blooms of inedible diatoms or cyanobacteria. Our findings highlight the role of parasite-mediated energy pathways for predictions of energy flow and community composition under current and future environmental change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748242 | PMC |
http://dx.doi.org/10.1002/ece3.9622 | DOI Listing |
Biol Lett
July 2024
Center for Ecological Research, Kyoto University, Kyoto, Japan.
Microbiol Spectr
February 2023
Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA.
Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC.
View Article and Find Full Text PDFEcol Evol
December 2022
Parasites form an integral part of food webs, however, they are often ignored in classic food web theory or limited to the investigation of trophic transmission pathways. Specifically, direct consumption of parasites by nonhost predators is rarely considered, while it can contribute substantially to energy flow in food webs. In aquatic systems, chytrids constitute a major group of fungal parasites whose free-living infective stages (zoospores) form a highly nutritional food source to zooplankton.
View Article and Find Full Text PDFmBio
June 2022
Department of Biomedical Sciences, University of Sassarigrid.11450.31, Sassari, Italy.
Trichomonas vaginalis can host the endosymbiont Mycoplasma hominis, an opportunistic pathogenic bacterium capable of modulating T. vaginalis pathobiology. Recently, a new noncultivable mycoplasma, " Mycoplasma girerdii," has been shown to be closely associated with women affected by trichomoniasis, suggesting a biological association.
View Article and Find Full Text PDFFront Physiol
August 2020
Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.
Parasitic infection improves metabolic homeostasis in "western diet"-induced obesity through the regulation of adipogenesis. However, the underlying mechanism is not yet fully understood. Using microarray analysis, this study investigated the long non-coding RNA (lncRNA) and messenger RNA (mRNA) profiles of subcutaneous adipose tissues from mice infected with protoscoleces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!