Background: Identification of the intersegmental plane (ISP) is the critical step in lung segmentectomy because of the complicated anatomic variations. Bronchial methylene blue staining was developed by our team in 2015 and is now commonly used at our center, it could rapidly and accurately identify the ISP. In this study, we aimed to compare bronchial methylene blue staining with the modified inflation-deflation method in terms of their perioperative characteristics and to present our experience of the methylene blue method.

Methods: From June 2020 to September 2021, the data of 112 patients with pulmonary ground-glass nodules who underwent segmentectomy by video-assisted thoracoscopic surgery were retrospectively reviewed. Sixty-two patients underwent bronchial methylene blue staining, and 50 patients underwent the modified inflation-deflation method.

Results: Both methods could accurately identify the ISP. The time taken to clearly display the ISP (82.94±28.08 868.20±145.89 seconds; P<0.001) and the surgical duration (131.69±32.05 146.08±28.11 minutes; P=0.014) were significantly shorter in the bronchial methylene blue staining group than in the modified inflation-deflation group. There were no significant differences between the two groups in the bleeding volume, drainage time, and length of postoperative hospital stay, as well as in most other perioperative characteristics.

Conclusions: Compared with the modified inflation-deflation method, the bronchial methylene blue staining method can quickly display the ISP and shorten the surgical duration. This method is safe and feasible, can be widely applied during thoracoscopic anatomic segmentectomy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745372PMC
http://dx.doi.org/10.21037/tcr-22-1428DOI Listing

Publication Analysis

Top Keywords

methylene blue
20
bronchial methylene
16
blue staining
16
modified inflation-deflation
12
staining modified
8
inflation-deflation method
8
intersegmental plane
8
lung segmentectomy
8
accurately identify
8
identify isp
8

Similar Publications

Porphyrin-based two-dimensional porous materials (SnP-H2TCPP, SnP-ZnTCPP) composed of robust Sn(IV)-porphyrin linkages have been synthesized by reacting -dihydroxo[5,10,15,20-tetraphenylporphyrinato]tin(IV) (SnP) with [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] (HTCPP) and [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]zinc(II) (ZnTCPP), respectively. The strength of the interaction between the carboxylic acid group of the monomeric porphyrins (HTCPP and ZnTCPP) and the axial hydroxyl moiety of SnP enables the construction of highly stable framework materials, which were characterized by FT-IR, UV-vis, and emmission spectroscopy, powder XRD, elemental analysis, and thermogravimetric analysis (TGA). SnP-H2TCPP and SnP-ZnTCPP absorb visible light strongly over a wide range, demonstrating weak perturbation in the electronic ground state structures of the π-conjugated aromatic moieties compared to the starting monomeric units.

View Article and Find Full Text PDF

Precise prediction of adsorption in a multicomponent system is vital for successful design of dye-contaminated industrial wastewater treatment processes. The present work looks for the reason behind the failure of the competitive Langmuir model (CLM) to describe adsorption in such systems, while the Langmuir model (LM) successfully describes the process for a single dye solution. With that end, derivations of LM and CLM have been revisited, and a criterion for the universality of active sites has been defined.

View Article and Find Full Text PDF

Aptamer-based DNAzyme walker electrochemical biosensing strategy for Acinetobacter baumannii detection.

Bioelectrochemistry

December 2024

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China. Electronic address:

In this study, an innovative electrochemical biosensor was developed for the rapid, specific, and sensitive detection of Acinetobacter baumannii without the need for sample pretreatment. The biosensor utilized an aptamer as a specific capture probe for A. baumannii and employed a self-powered DNAzyme walker cleavage cycle reaction to achieve signal amplification.

View Article and Find Full Text PDF

The conductivity of Zn-MOF-on-Co-MOF synthesized by one-pot method is improved by searching for the optimum carbonization temperature, which overcomes the limitation of traditional MOF. In order to further enhance electron transfer, the mesoporous PtPdCo trimetal was introduced, which provided considerable load capacity for methylene blue (MB) and reverse complementary DNA (sDNA), and also showed excellent catalytic activity for MB. In this study, the conductivity of aptasensor was improved by modifying carbonized MOF as the base material.

View Article and Find Full Text PDF

A novel environmentally friendly adsorbent, poly(limonene--divinylbenzene--2-acrylamido-2-methyl-1-propanesulfonic acid, LIM--DVB--AMPS), was synthesized and applied for the adsorption of methylene blue from aqueous solutions in this study. The structure, morphology, and thermal stability of the green adsorbent were determined by the FTIR, SEM, TGA/DTA/DTG, and BET techniques, ζ potential, and elemental analysis. The efficiency of the adsorption process was improved with respect to several experimental conditions, viz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!