Length matters: Functional flip of the short TatA transmembrane helix.

Biophys J

Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany. Electronic address:

Published: June 2023

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatA in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257086PMC
http://dx.doi.org/10.1016/j.bpj.2022.12.016DOI Listing

Publication Analysis

Top Keywords

mismatch introduced
8
introduced reconstitution
8
tmh
6
length matters
4
matters functional
4
functional flip
4
flip short
4
tata
4
short tata
4
tata transmembrane
4

Similar Publications

Background: Proper positioning of a total hip arthroplasty (THA) plays a crucial role in the success and long-term survivorship of the implant. Cup positioning within the Lewinnek Safe Zone (LSZ) does not, however, avoid implant dislocation. Thus, the concept of a functional cup position has been introduced.

View Article and Find Full Text PDF

GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.

BMC Bioinformatics

January 2025

MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.

Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.

View Article and Find Full Text PDF

Prime editing enables precise and efficient genome editing, but its efficacy is hindered by pegRNA's 3' extension, forming secondary structures due to high complementarity with the protospacer. The continuous presence of the prime editing system also leads to unintended indel formation, raising safety concerns for therapeutic applications. To address these challenges, we develop a mismatched pegRNA (mpegRNA) strategy that introduces mismatched bases into the pegRNA protospacer, reducing complementarity and secondary structure formation, and preventing sustained activity.

View Article and Find Full Text PDF

Frequency-domain-based nonlinear normalized iterative learning control for three-dimensional ball screw drive systems.

ISA Trans

December 2024

College of Information Science and Engineering, Huaqiao University, Xiamen, 361002, China. Electronic address:

Iterative learning control (ILC) is a well-established method for achieving precise tracking in repetitive tasks. However, most ILC algorithms rely on a nominal plant model, making them susceptible to model mismatches. This paper introduces a novel normalization concept, developed from a frequency-domain perspective using a data-driven approach, thus eliminating the need for system model information.

View Article and Find Full Text PDF

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!