Within the framework of the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization (NSDI) of Ar by elliptically polarized laser pulses with a wavelength of 788 nm at an intensity of 0.7 × 10 W/cm for the ellipticities ranging from 0 to 0.3. Only the CMDs for recollision excitation with subsequent ionization (RESI) are calculated and the contribution from recollision direct ionization is neglected. According to the QRS model, the CMD for RESI can be factorized as a product of the parallel momentum distribution (PMD) for the first released electron after recollision and the PMD for the second electron ionized from an excited state of the parent ion. The PMD for the first electron is obtained from the laser-free differential cross sections for electron impact excitation of Ar calculated using state-of-the-art many-electron R-matrix theory while that for the second electron is evaluated by solving the time-dependent Schrödinger equation. The results show that the CMDs for all the ellipticities considered here exhibit distinct anticorrelated back-to-back emission of the electrons along the major polarization direction, and the anticorrelation is more pronounced with increasing ellipticity. It is found that anticorrelation is attributed to the pattern of the PMD for the second electron ionized from the excited state that, in turn, is caused by the delayed recollision time with respect to the instant of the external field crossing. Our work shows that both the ionization potential of the excited parent ion and the laser intensity play important roles in the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.475497 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFJID Innov
March 2025
Small Animal Clinic, École Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France.
Our objectives were to explore epidermal barrier defects in dogs with atopic dermatitis and to determine whether the defects are genetically determined or secondary to skin inflammation. First, the expression of filaggrin, corneodesmosin, and claudin1, analyzed using indirect immunofluorescence in skin biopsies collected from 32 healthy and 32 dogs with atopic dermatitis, was weaker in the atopic skin ( .003).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey.
In the current research mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, 252-5210, Japan.
Electromagnetic whistler-mode chorus waves are a key driver of variations in energetic electron fluxes in the Earth's magnetosphere through the wave-particle interaction. Traditionally understood as a diffusive process, these interactions account for long-term electron flux variations (> several minutes). However, theories suggest that chorus waves can also cause rapid (< 1 s) electron acceleration and significant flux variations within less than a second through a nonlinear wave-particle interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!