The transverse Anderson localization (TAL) can always be observed in one-dimensional (1D) disordered systems as long as the transverse dimension is significantly larger than the localization length. This paper presents a detailed modal analysis in one particular realization of the 1D disordered optical waveguides with wavelength-scale feature size based on the imaginary distance beam propagation method (BPM). The localized modes are independent of the physical properties of the external excitation. Additionally, we investigate how the boundaries of disordered waveguides affect the localized modes, which are only related to the design parameters such as feature size, refractive index contrast, and fill-fraction. Finally, we explore the impact of the design parameters on the average localized mode width in the 1D disordered waveguides.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.472944DOI Listing

Publication Analysis

Top Keywords

modal analysis
8
transverse anderson
8
anderson localization
8
based imaginary
8
imaginary distance
8
feature size
8
localized modes
8
disordered waveguides
8
design parameters
8
analysis transverse
4

Similar Publications

Introduction: Colorectal cancer (CRC) is the third most common and second most deadly cancer worldwide, with significant morbidity and mortality risks. Despite advancements in surgical care, postoperative complications and recovery challenges persist. The severity of these issues is linked to preoperative functional capacity and emotional distress.

View Article and Find Full Text PDF

Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.

View Article and Find Full Text PDF

An integrated approach to uncertainty and global sensitivity analysis in penstock structural modeling.

Heliyon

January 2025

Department of Mechanical Engineering, Mohammadia School of Engineering, Avenue Ibn Sina B.P 765, Agdal, Rabat, 10090, Morocco.

Enhanced penstock structural models significantly advance hydropower engineering, yet their increasing complexity introduces challenges. As model interactions intensify, predictability and comprehensibility decrease, complicating the evaluation of model accuracy and alignment with operational performance metrics and safety standards. This issue is particularly pronounced in dynamic modeling, where knowledge gaps hinder straightforward validation via observational data.

View Article and Find Full Text PDF

Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare.

ACS Nano

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.

Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.

View Article and Find Full Text PDF

Summary: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Non-linear Iterative Partial Least Squares (NIPALS). We applied nipalsMCIA to both bulk and single cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!