A new method was developed to evaluate the perceived gamut of a display. A multispectral image of a white gypsum sphere was projected onto various highly chromatic lights, producing a series of images with distinct hue perceptions at the gamut boundary of displays. These images were subsequently used in a psychophysical experiment to examine the perceived color gamut. Afterwards, the visual results were further compared with the prediction results from various uniform color spaces (UCSs) and color appearance models (CAMs). The present results demonstrate that CAM16-UCS provides the most accurate prediction across the entire color gamut, whereas the cyan-to-blue region is more poorly predicted than the other hue regions for all CAMs and UCSs investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.472808DOI Listing

Publication Analysis

Top Keywords

color gamut
12
color
5
gamut
5
estimation perceptual
4
perceptual color
4
gamut displays
4
displays method
4
method developed
4
developed evaluate
4
evaluate perceived
4

Similar Publications

Perovskite nanocrystals (NCs) with their excellent optical and semiconductor properties have emerged as primary candidates for optoelectronic applications. While extensive research has been conducted on the 3D perovskite phase, the zero-dimensional (0D) form of this promising material in the NC format remains elusive. In this paper, a new synthesis strategy is proposed.

View Article and Find Full Text PDF

The proliferation of sophisticated counterfeiting poses critical challenges to global security and commerce, with annual losses exceeding $2.2 trillion. This paper presents a novel physics-constrained deep learning framework for high-precision security ink colorimetry, integrating three key innovations: a physics-informed neural architecture achieving unprecedented color prediction accuracy (CIEDE2000 (ΔE00): 0.

View Article and Find Full Text PDF

An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China.

Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.

View Article and Find Full Text PDF

Color difference models (CDMs) are essential for accurate color reproduction in image processing. While CDMs aim to reflect perceived color differences (CDs) from psychophysical data, they remain largely untested in wide color gamut (WCG) and high dynamic range (HDR) contexts, which are underrepresented in current datasets. This gap highlights the need to validate CDMs across WCG and HDR.

View Article and Find Full Text PDF

High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!