Spatial cues that mismatch the colour of a subsequent target have been shown to slow responses to targets that share their location. The source of this 'same location cost' (SLC) is currently unknown. Two potential sources are attentional signal suppression and object-file updating. Here, we tested a direct prediction of the suppression account using data from a spatial-cueing study in which we recorded brain activity using electroencephalography (EEG), and focusing on the event-related P component, which is thought to index attentional signal suppression. Correlating P amplitude with SLC magnitude, we tested the prediction that if attentional signal suppression is the source of the SLC, then the SLC should be positively correlated with P amplitude. Across 48 participants, SLC and P magnitudes were negatively correlated, in direct contradiction to a suppression account of the SLC. These results are compatible with an object-file updating account of the SLC in which updating is facilitated by reactive suppression of the to-be-updated stimulus information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13414-022-02633-w | DOI Listing |
J Ethnopharmacol
January 2025
Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine,100007; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine,100029.
Ethnopharmacological Relevance: Traditional Chinese Medicine (TCM), as a longstanding therapeutic approach, offers unique advantages and potential in the treatment of liver cancer. Recent studies have highlighted its role in preventing liver cancer progression by modulating key signaling pathways. TCM's multi-component, multi-target, and multi-pathway mechanisms of action have garnered significant attention in the medical community for their ability to address complex diseases like liver cancer.
View Article and Find Full Text PDFPhytomedicine
January 2025
Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China. Electronic address:
Background: Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects.
Purpose: This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India.
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Capital Normal University, Beijing, 100048, China.
Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.
View Article and Find Full Text PDFMinerva Cardiol Angiol
January 2025
Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
The assessment of myocardial function and its coupling with the arterial system, called ventricular-arterial coupling (VAC), is of paramount importance in many clinical fields, from arterial hypertension, which is the main cause of cardiovascular diseases and death, to heart failure. VAC has been the subject of studies for several decades both from an energetic cost and the impact it can exert on cardiovascular performance. Although more attention has been paid to the relationship between the left ventricle and the left arterial circuit in compromised hemodynamic stages, VAC has aroused interest in many other aspects of study, from its application in pathologies of the right sections of the heart to its clinical impact in prevention and cardiovascular risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!