Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin A.

Cell Death Dis

BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom.

Published: December 2022

Nuclear actin participates in a continuously expanding list of core processes within eukaryotic nuclei, including the maintenance of genomic integrity. In response to DNA damage, nuclear actin polymerises into filaments that are involved in the repair of damaged DNA through incompletely defined mechanisms. We present data to show that the formation of nuclear F-actin in response to genotoxic stress acts as a scaffold for PML NBs and that these filamentous networks are essential for PML NB fission and recruitment of microbodies to DNA lesions. Further to this, we demonstrate that the accumulation of the toxic lamin A precursor prelamin A induces mislocalisation of nuclear actin to the nuclear envelope and prevents the establishment of nucleoplasmic F-actin networks in response to stress. Consequently, PML NB dynamics and recruitment to DNA lesions is ablated, resulting in impaired DNA damage repair. Inhibition of nuclear export of formin mDia2 restores nuclear F-actin formation by augmenting polymerisation of nuclear actin in response to stress and rescues PML NB localisation to sites of DNA repair, leading to reduced levels of DNA damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755150PMC
http://dx.doi.org/10.1038/s41419-022-05491-4DOI Listing

Publication Analysis

Top Keywords

nuclear actin
20
dna damage
16
pml nbs
8
dna
8
nuclear
8
nuclear f-actin
8
dna lesions
8
response stress
8
actin
5
pml
5

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.

View Article and Find Full Text PDF

[Protective effect of tumor necrosis factor receptor-associated factor 6 inhibitor C25-140 on acute kidney injury induced by diquat poisoning in mice].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Emergency, Kweichow Moutai Hospital, Renhuai 564500, Guizhou, China. Corresponding author: Ou Renyang, Email:

Objective: To investigate the protective effect and mechanism of tumor necrosis factor receptor-associated factor 6 (TRAF6) inhibitor C25-140 on acute kidney injury (AKI) induced by acute diquat (DQ) poisoning in mice.

Methods: A total of 80 SPF grade healthy male C57BL/6 mice were randomly divided into the normal control group, DQ model group, C25-140 intervention group, and C25-140 control group, with 20 mice in each group. The DQ poisoning mouse model was established by using one-time intraperitoneal injection of 1 mL of 40 mg/kg DQ solution.

View Article and Find Full Text PDF

A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.

View Article and Find Full Text PDF

Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!