Introduction: Understanding if divergent molecular profiles of DNA damage and repair (DDR) pathway activity, a biomarker of disease progression, exist in prostate tumors with favorable-risk features is an unmet need, which this study aim to unearth.
Materials And Methods: This was a multicenter registry genome-wide expression profiling study of prospectively collected radical prostatectomy (RP) tumor samples from 2014 to 2016. DDR activity was calculated from average expression of 372 DDR genes. Consensus hierarchical clustering was used to arrive at a robust clustering solution based on DDR gene expression patterns. Genome-wide differential expression between clusters was performed, and outcomes were evaluated across expression patterns.
Results: Of 5239 patients from the prospective registry, 376 had favorable-risk disease (Grade group [GG] 1 to 2, PSA prior to RP <10ng/ml, pT2 or less). DDR activity score was correlated with prognostic genomic signatures that predict for metastatic risk (r = 0.37, P < 2e) and high grade groups (P < .001). High DDR activity (top-quartile) was observed in 28% of patients with favorable-risk disease. In favorable-risk disease, 3 distinct clusters with varied DDR activity emerged with consensus clustering. Cluster I (compared with cluster II-III and GG3-GG5 disease) had the highest expression of all DDR sub-pathways, MYC, PAPR1, AR, and AR activity (P < .001 for all). Furthermore, cluster I was associated with poorer metastasis-free survival (MFS) and Overall survival (OS) compared with other clusters (MFS; HR: 2.43, 95%CI, [1.22-4.83], P = .01; OS; HR: 2.77, 95%CI, [1.18-6.5], P = .01).
Conclusions: Cluster I is a novel subgroup of favorable-risk disease with high DDR activity, AR activity, PARP1 and chr8q/MYC expression, and poorer MFS and OS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clgc.2022.11.005 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.
View Article and Find Full Text PDFOncol Rep
February 2025
Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.
Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.
View Article and Find Full Text PDFGenome Med
January 2025
Laboratory of Cytogenetics and Genome Research, Centre for Human Genetics, KU Leuven, Leuven, 3000, Belgium.
Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!