Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in type 2 diabetes mellitus and the elderly, impacting 40% of individuals over 70. Regulation of heterochromatin at the nuclear lamina has been associated with aging and age-dependent metabolic changes. We previously showed that changes at the lamina in aged hepatocytes and laminopathy models lead to redistribution of lamina-associated domains (LADs), opening of repressed chromatin, and up-regulation of genes regulating lipid synthesis and storage, culminating in fatty liver. Here, we test the hypothesis that change in the expression of lamina-associated proteins and nuclear shape leads to redistribution of LADs, followed by altered binding of pioneer factor FOXA2 and by up-regulation of lipid synthesis and storage, culminating in steatosis in younger NAFLD patients (aged 21-51). Changes in nuclear morphology alter LAD partitioning and reduced lamin B1 signal correlate with increased FOXA2 binding before severe steatosis in young mice placed on a western diet. Nuclear shape is also changed in younger NAFLD patients. LADs are redistrubted and lamin B1 signal decreases similarly in mild and severe steatosis. In contrast, FOXA2 binding is similar in normal and NAFLD patients with moderate steatosis and is repositioned only in NAFLD patients with more severe lipid accumulation. Hence, changes at the nuclear lamina reshape FOXA2 binding with progression of the disease. Our results suggest a role for nuclear lamina in etiology of NAFLD, irrespective of aging, with potential for improved stratification of patients and novel treatments aimed at restoring nuclear lamina function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808618PMC
http://dx.doi.org/10.1101/gr.277149.122DOI Listing

Publication Analysis

Top Keywords

nuclear lamina
16
nafld patients
16
fatty liver
12
foxa2 binding
12
redistribution lamina-associated
8
lamina-associated domains
8
binding pioneer
8
pioneer factor
8
factor foxa2
8
nonalcoholic fatty
8

Similar Publications

Dryopteris×subdiffracta (Dryopteridaceae), a new natural hybrid fern from Guangxi, China.

PhytoKeys

December 2024

Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.

A new natural hybrid fern, Dryopteris×subdiffracta (Dryopteridaceae), is reported from Guangxi, China. Molecular phylogenetic analysis based on DNA sequences from the low-copy nuclear marker and plastid genome revealed respectively that and are parents of the new hybrid, with as the maternal parent. Cytometric analysis of the nuclear DNA content indicated that might be a diploid hybrid.

View Article and Find Full Text PDF

Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.

View Article and Find Full Text PDF

PRR14 mediates mechanotransduction and regulates myofiber identity via MEF2C in skeletal muscle.

Metabolism

December 2024

Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China. Electronic address:

Skeletal muscle is a crucial tissue for physical activity and energy metabolism. Muscle atrophy, characterized by the loss of muscle mass and strength, contributes to adverse outcomes among individuals. This study elucidated the involvement of the nuclear lamina component PRR14 in transmitting mechanical signals and mediating the impact of exercise on skeletal muscle.

View Article and Find Full Text PDF

The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the gene to the nuclear lamina in neuroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!