This investigation was undertaken to examine the chemical nature of components on the surface of primordial germ cells (PGCs) possibly related to their directed migration during development. To this end, lectins conjugated to horseradish peroxidase were used as specific histochemical probes to characterize the structure of PGC cell surface glycoconjugates and changes in their composition during and after their migration in the rat embryo. A lectin specific for terminal N-acetylgalactosamine (GalNAc) from Dolichos biflorus intensely stained the cell surface and a perinuclear region assumed to be Golgi zone of PGCs only during their migration. With one exception, no other site in the embryo stained with this lectin as migration proceeded. These observations suggest that the GalNAc-containing glycoconjugates on the surface of PGCs may be of functional importance in regulating the guidance and locomotion of these cells during the course of their extensive migration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0045-6039(87)90456-8DOI Listing

Publication Analysis

Top Keywords

primordial germ
8
germ cells
8
cell surface
8
migration
6
surface
5
presence unique
4
unique glycoconjugate
4
glycoconjugate surface
4
surface rat
4
rat primordial
4

Similar Publications

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish.

N Biotechnol

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:

Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.

View Article and Find Full Text PDF

Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution.

BMC Genomics

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!