GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851399PMC
http://dx.doi.org/10.1101/gad.350145.122DOI Listing

Publication Analysis

Top Keywords

gata4
10
hepatic gata4
8
adult liver
8
liver gata4
8
gata4 binding
8
binding sites
8
gata4lko mice
8
liver
6
hepatic
4
gata4 regulates
4

Similar Publications

Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

December 2024

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.

View Article and Find Full Text PDF

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks.

View Article and Find Full Text PDF

To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.

View Article and Find Full Text PDF

Phenotypes Associated With Polycystic Ovary Syndrome Risk Variants.

J Endocr Soc

November 2024

Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

Context: Polycystic ovary syndrome (PCOS) affects 10% of women of reproductive age. The genetic architecture of the disease is emerging, but there is little data exploring the effect of genetic risk on clinical presentation.

Objective: We hypothesized that genetic risk loci would influence measurable phenotypic traits.

View Article and Find Full Text PDF

Partial Cell Fate Transitions to Promote Cardiac Regeneration.

Cells

December 2024

Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!