Polyhalogenated carbazoles (PHCZs) have been widely accepted as emerging pollutants, whereas their ecological and health risks remain uncertain. Herein, female and male Sprague-Dawley (SD) mice were treated with four typical PHCZs to investigate their negative consequences, along with alternations in gut microbiota to indicate underlying mechanisms. In female mice, the relative liver weight ratio increased after four PHCZs exposure; 2-bromocarbazole (2-BCZ) increased urine glucose level; 3-bromocarbazole (3-BCZ) decreased the glucose and total cholesterol levels; 3,6-dichlorocarbazole (3,6-DCCZ) decreased glucose level. The only disturbed biochemical index in male mice was the promoted alkaline phosphatase (ALP) level by 3,6-DCCZ. We also found that the differential blood biochemical indices were correlated with gut microbiota. 3-BCZ and 3,6-DCCZ altered Bacteroidetes and Proteobacteria phyla in female and male mice, which were correlated with metabolic disorders. Our findings demonstrated the correlation between PHCZs induced potential hepatotoxicity and metabolic disorders may be due to their dioxin-like potentials and endocrine disrupting activities, and the gender differences might result from their estrogenic activities. Overall, data presented here can help to evaluate the ecological and health risks of PHCZs and reveal the underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2022.06.028 | DOI Listing |
Am J Physiol Renal Physiol
January 2025
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.
View Article and Find Full Text PDFDiabetes Metab Res Rev
January 2025
Rush Alzheimer's Disease Centre, Rush University Medical Center, Chicago, Illinois, USA.
Diabetes increases the risk of dementia, and insulin resistance (IR) has emerged as a potential unifying feature. Here, we review published findings over the past 2 decades on the relation of diabetes and IR to brain health, including those related to cognition and neuropathology, in the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study (ROS/MAP/MARS), three harmonised cohort studies of ageing and dementia at the Rush Alzheimer's Disease Center (RADC). A wide range of participant data, including information on medical conditions such as diabetes and neuropsychological tests, as well as other clinical and laboratory-based data collected annually.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China.
Background/purpose: Periodontitis is associated with systemic health. One of the underlying mechanisms is the translocation of periodontal pathogens, among which () is the most common. Here, we aimed to illustrate the biodistribution and dynamics of from gingiva to multiple organs through blood circulation.
View Article and Find Full Text PDFLife Metab
December 2024
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Life Metab
December 2024
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China.
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!