A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating aldehyde and ketone compounds produced from indoor cooking emissions and assessing their health risk to human beings. | LitMetric

Investigating aldehyde and ketone compounds produced from indoor cooking emissions and assessing their health risk to human beings.

J Environ Sci (China)

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Published: May 2023

Aldehyde and ketone compounds are ubiquitous in the air and prone to adverse effects on human health. Cooking emission is one of the major indoor sources. Aiming to evaluate health risks associated with inhalation exposure to aldehyde and ketone compounds, 13 carbonyl compounds (CCs) released from heating 5 edible oils, 3 seasonings, and 2 dishes were investigated in a kitchen laboratory. For the scenarios of heating five types of oil, aldehydes accounted for 61.1%-78.0% of the total emission, mainly acetaldehyde, acrolein and hexanal. Comparatively, heating oil with added seasonings released greater concentrations of aldehyde and ketone compounds. The concentration enhancement of larger molecular aldehydes was significantly greater. The emission factors of aldehyde and ketone compounds for cooking the dish of chili fried meat were much greater compared to that of tomato fried eggs. Therefore, food materials also had a great impact on the aldehyde and ketone emissions. Acetone and acetaldehyde were the most abundant CCs in the kitchen. Acrolein concentrations ranged from 235.18 to 498.71 µg/m, which was about 100 times greater compared to the guidelines provided by Office of Environmental Health Hazard Assessment (OEHHA). The acetaldehyde inhalation for adults was 856.83-1515.55 µg and 56.23-192.79 µg from exposure to chili fried meat and tomato fried eggs, respectively. This exceeds the reference value of 90 µg/day provided by OEHHA. The findings of this study provided scientific evidences for the roles of cooking emissions on indoor air quality and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.05.033DOI Listing

Publication Analysis

Top Keywords

aldehyde ketone
24
ketone compounds
20
cooking emissions
8
human health
8
chili fried
8
fried meat
8
greater compared
8
tomato fried
8
fried eggs
8
ketone
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!