Comprehensive evaluation method of urban air quality statistics based on environmental monitoring data and its application.

J Environ Sci (China)

Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Published: January 2023

Air quality monitoring is effective for timely understanding of the current air quality status of a region or city. Currently, the huge volume of environmental monitoring data, which has reasonable real-time performance, provides strong support for in-depth analysis of air pollution characteristics and causes. However, in the era of big data, to meet current demands for fine management of the atmospheric environment, it is important to explore the characteristics and causes of air pollution from multiple aspects for comprehensive and scientific evaluation of air quality. This study reviewed and summarized air quality evaluation methods on the basis of environmental monitoring data statistics during the 13th Five-Year Plan period, and evaluated the level of air pollution in the Beijing-Tianjin-Hebei region and its surrounding areas (i.e., the "2+26" region) during the period of the three-year action plan to fight air pollution. We suggest that air quality should be comprehensively, deeply, and scientifically evaluated from the aspects of air pollution characteristics, causes, and influences of meteorological conditions and anthropogenic emissions. It is also suggested that a three-year moving average be introduced as one of the evaluation indexes of long-term change of pollutants. Additionally, both temporal and spatial differences should be considered when removing confounding meteorological factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.10.003DOI Listing

Publication Analysis

Top Keywords

air quality
24
air pollution
20
environmental monitoring
12
monitoring data
12
air
11
pollution characteristics
8
quality
6
pollution
5
comprehensive evaluation
4
evaluation method
4

Similar Publications

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction.

J Hazard Mater

January 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.

The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.

View Article and Find Full Text PDF

It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.

View Article and Find Full Text PDF

Fly Me to the Moon (or Not).

Respirology

January 2025

Department of Respiratory & Sleep Medicine, The Alfred Hospital, Prahran, Victoria, Australia.

View Article and Find Full Text PDF

Bioaugmented slurry technology is a sustainable remediation technology for PAHs-contaminated soil. However, the lack of experimental data on the remediation of complex, actual contaminated soils has hindered the practical application of this technology. This study explored the bioaugmented degradation of PAHs using actual soil slurry with and without the addition of microbial agents in the microscopic world.

View Article and Find Full Text PDF

Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment.

Neuroimage

January 2025

Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.

The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!