Progress in quantitative research on the relationship between atmospheric oxidation and air quality.

J Environ Sci (China)

State Key Joint Laboratory or Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. Electronic address:

Published: January 2023

AI Article Synopsis

  • Atmospheric oxidizing capacity (AOC) is crucial for understanding tropospheric chemistry, with recent studies in China enhancing its definition and quantitative assessment through established indexes for apparent and potential oxidizing abilities.
  • Research in Beijing and surrounding areas has refined the evaluation of AOC, emphasizing the role of heterogeneous chemistry and enabling the detection of key atmospheric radicals in various environments using domestic technology.
  • Advanced modeling techniques, like the GRAPES-CUACE model, have been utilized to optimize simulations of substances affecting atmospheric oxidation and aerosol formation, leading to improved control strategies for air quality management.

Article Abstract

Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO·, NO· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O and NO, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O and PM was analyzed by scenario simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.06.029DOI Listing

Publication Analysis

Top Keywords

atmospheric oxidizing
12
atmospheric
8
atmospheric oxidation
8
chinese scholars
8
oxidizing ability
8
aoc
7
progress quantitative
4
quantitative relationship
4
relationship atmospheric
4
oxidation air
4

Similar Publications

Purification and Value-Added Conversion of NO under Ambient Conditions with Photo-/Electrocatalysis Technology.

Environ Sci Technol

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

Chicken eggshell waste is an alternative renewable source for quicklime production. Eggshell waste has received significant attention from researchers due to it being a potential source of bio-CaO, which not only drives the circular economy concept but also supports sustainable development. However, experiments on the production of bio-CaO are normally conducted in a small lab-scale furnace.

View Article and Find Full Text PDF

Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal.

Environ Res

January 2025

Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.

View Article and Find Full Text PDF

Aiming to reduce sulfur oxides emission in the atmosphere, the International Maritime Organization developed regulations on shipping that came into effect in 2020. The new rules incentivized many owners to install scrubber systems on thousands of ships. However, the overall environmental implications of scrubbers is a controversial subject, largely due to the release of acids, metals, and chemicals in the oceans and impact on marine life.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!