A variety of methods based on air quality models, including tracer methods, the brute-force method (BFM), decoupled direct method (DDM), high-order decoupled direct method (HDDM), response surface models (RSMs) and so on forth, have been widely used to study the transport of air pollutants. These methods have good applicability for the transport of air pollutants with simple formation mechanisms. However, differences in research conclusions on secondary pollutants with obvious nonlinear characteristics have been reported. For example, the tracer method is suitable for the study of simplified scenarios, while HDDM and RSMs are more suitable for the study for nonlinear pollutants. Multiple observation techniques, including conventional air pollutant observation, lidar observation, air sounding balloons, vehicle-mounted and ship-borne technology, aerial surveys, and remote sensing observations, have been utilized to investigate air pollutant transport characteristics with time resolution as high as 1 sec. In addition, based on a multi-regional input-output model combined with emission inventories, the transfer of air pollutant emissions can be evaluated and applied to study the air pollutant transport characteristics. Observational technologies have advantages in temporal resolution and accuracy, while modeling technologies are more flexible in spatial resolution and research plan setting. In order to accurately quantify the transport characteristics of pollutants, it is necessary to develop a research method for interactive verification of observation and simulation. Quantitative evaluation of the transport of air pollutants from different angles can provide a scientific basis for regional joint prevention and control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.06.022DOI Listing

Publication Analysis

Top Keywords

transport air
16
air pollutants
16
air pollutant
16
transport characteristics
12
air
10
decoupled direct
8
direct method
8
suitable study
8
pollutant transport
8
transport
7

Similar Publications

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

To address the issue of safe, orderly, and efficient operation for unmanned vehicles within the apron area in the future, a hardware framework of aircraft-vehicle-airfield collaboration and a trajectory planning method for unmanned vehicles on the apron were proposed. As for the vehicle-airfield perspective, a collaboration mechanism between flight support tasks and unmanned vehicle departure movement was constructed. As for the latter, a control mechanism was established for the right-of-way control of the apron.

View Article and Find Full Text PDF

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Alkali-Activated Permeable Concretes with Agro-Industrial Wastes for a Sustainable Built Environment.

Materials (Basel)

December 2024

Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.

This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).

View Article and Find Full Text PDF

China is concurrently facing the dual challenges of air pollution and climate change. Here, we established a coupled modeling framework that integrated a chemical transport model with a health impact assessment model and the human capital method, to quantify the contributions of 150 emission sources (five sectors in 30 provinces) to the CO emissions, and the mortality burdens attributed to O and PM. We found that, in 2019, the estimated premature deaths in China attributed to PM and O pollution were 1,499,073 and 143,420, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!