A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control. | LitMetric

Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control.

J Environ Sci (China)

State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China. Electronic address:

Published: January 2023

In order to comprehensively evaluate the environmental impact of multi-media mercury pollution under differentiated emission control strategies in China, a literature review and case studies were carried out. Increased human exposure to methylmercury was assessed through the dietary intake of residents in areas surrounding a typical coal-fired power plant and a zinc (Zn) smelter, located either on acid soil with paddy growth in southern China, or on alkaline soil with wheat growth in northern China. Combined with knowledge on speciated mercury in flue gas and the fate of mercury in the wastewater or solid waste of the typical emitters applying different air pollution control devices, a simplified model was developed by estimating the incremental daily intake of methylmercury from both local and global pollution. Results indicated that air pollution control for coal-fired power plants and Zn smelters can greatly reduce health risks from mercury pollution, mainly through a reduction in global methylmercury exposure, but could unfortunately induce local methylmercury exposure by transferring more mercury from flue gas to wastewater or solid waste, then contaminating surrounding soil, and thus increasing dietary intake via crops. Therefore, tightening air emission control is conducive to reducing the comprehensive health risk, while the environmental equity between local and global pollution control should be fully considered. Rice in the south tends to have higher bioconcentration factors than wheat in the north, implying the great importance of strengthening local pollution control in the south, especially for Zn smelters with higher contribution to local pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.03.028DOI Listing

Publication Analysis

Top Keywords

emission control
16
pollution control
16
pollution
9
differentiated emission
8
control
8
mercury pollution
8
dietary intake
8
coal-fired power
8
mercury flue
8
flue gas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!