Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Men and women with chronic pain report increased alcohol use and are more likely to be diagnosed with alcohol use disorder. The relationship between alcohol use and pain is bidirectional. Alcohol is used as an analgesic, but chronic alcohol intake increases pain. Sex differences in the relationship between chronic pain and alcohol are reported in the clinical and preclinical literature, but due to this bidirectional relationship, it is challenging to investigate the mechanisms that contribute to these differences. Thus, animal models of chronic pain are needed to characterize the efficacy of ethanol as an analgesic in males and females. The current experiments tested the hypothesis that ethanol differentially reduces pain behaviors in male and female mice in chronic neuropathic pain.
Methods: The spared nerve injury (SNI) model was used to investigate the analgesic effects of multiple doses of ethanol (0.5, 1, 2, g/kg i.p.) in male and female mice using von Frey and dynamic weight-bearing (DWB) assays.
Results: In both male and female mice, SNI led to robust allodynia and shifts in dynamic weight bearing. In male SNI mice, all three doses of ethanol fully reversed mechanical allodynia and shifts in DWB. In SNI females, only the highest dose (2.0 g/kg) was fully antiallodynic in the von Frey assay, while shifts in weight bearing were reversed at the 1.0 and 2.0 g/kg doses. The differences between male and females were not due to lower blood ethanol concentrations in female mice.
Conclusion: These data indicate that while ethanol has antiallodynic and antinociceptive effects in male and female mice, the doses and time course of these effects are distinct. Studies investigating the relationship between pain and ethanol exposure in mice should consider sex as a key variable. These data also inform reported sex differences in rodent models of chronic pain and in chronic pain patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992011 | PMC |
http://dx.doi.org/10.1111/acer.14997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!