The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160892 | DOI Listing |
Sci Total Environ
March 2023
Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO).
View Article and Find Full Text PDFSci Total Environ
June 2021
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
Dissolution is the primary process affecting the bioavailability and toxicity of nanoscale copper oxide (nano-CuO) to plants and soil organisms. In this study, particle morphology, organic acid, and soil properties were considered to understand the dissolution characteristics of nano-CuO in soil solutions. The results showed that the copper ions (Cu) released from spherical nano-CuO (CuO NPs), tubular nano-CuO (CuO NTs), and spherical microsized CuO (CuO MPs) in the ten soil solutions were 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!