Investigate the effect of soil organic matter (SOM) and low molecular weight organic acids (LMWOAs) on minerals adsorption of PAHs. Batch adsorption experiments have been carried out to study the adsorption of PAHs (Naphthalene (NaP), Phenanthrene (Phe) and Pyrene (Pyr)) by minerals (Montmorillonite (Mnt), kaolinite (Kln) and calcite (Cal)). This research found that compared with Kln and Cal, Mnt showed the maximum adsorption capability for PAHs. And the order of PAHs adsorption by Mnt was: Pyr > Phe > Nap, which corresponds to the octanol-water partition coefficient (K) of different PAHs. The adsorption kinetic and isotherm were well fitted by Pseudo-second-order kinetic model, Freundlich and Linear isotherm model. Furthermore, inorganic ions (Ca) impacted PAHs adsorption by competitive adsorption and cation-π interactive. Cal has the maximum desorption of PAHs among three minerals, and there was desorption hysteresis phenomenon. Field emission-scanning electron microscope (Fe-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis indicated that SOM enhanced the sorption of PAHs by van der Waals, hydrogen bonding, π-π interactions, and chemical bonding. LMWOAs significantly inhibited PAHs adsorption and promote PAHs desorption from the minerals. As a result, LMWOAs increased of PAHs bioavailability, which provide a new strategy to improve PAHs cleanup efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160872DOI Listing

Publication Analysis

Top Keywords

pahs adsorption
16
pahs
13
adsorption
9
organic matter
8
organic acids
8
adsorption pahs
8
minerals
5
influence mechanism
4
organic
4
mechanism organic
4

Similar Publications

MOFs-based adsorbents for the removal of tetracycline from water and food samples.

Sci Rep

January 2025

Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, SP, Brazil.

Tetracyclines (TCs) are widely employed for the prevention and treatment of diseases in animals besides being deployed to promote animal growth and weight gain. Such practices result in trace amounts of TCs occurrence in water and foodstuffs of animal origin, including eggs and milk, thus posing severe health risks to humans. To ensure the food and water safety and to avoid exposure to humans, the removal of TC residues from food and water has recently garnered a considerable attention.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

[Sorption and Transport of Antibiotics in Manured Upland Agricultural Soils].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Sorption and transport are important environmental behaviors of antibiotics in soils and can determine the fate of antibiotics in environments; however, limited relevant studies have been conducted on long-term manured soils. In this study, batch and repacked soil column experiments were conducted to examine the sorption and transport behavior of four veterinary antibiotics, including sulfamethazine (SMT), florfenicol (FFC), doxycycline (DOX), and enrofloxacin (ENR), in red soils, yellow soils, and calcareous soils with long-term amendment of chicken or pig manure collected in Zhejiang Province. The results showed that the sorption isothermal data of the four target antibiotics all conformed well to the linear and Freundlich models.

View Article and Find Full Text PDF

Compared to the laboratory preparation of biochar, there is less research on the adsorption of antibiotics by industrial production of biochar in water. In this study, three types of industrial production biochar (peanut shell biochar, sludge biochar, and perishable waste biochar) were selected, and their adsorption performance for tetracycline in composite-polluted water was systematically studied. The results indicated that the Freundlich equation could well fit the adsorption isotherms of the three types of biochar for tetracycline.

View Article and Find Full Text PDF

Dual-purpose elemental sulfur for capturing and accelerating biodegradation of petroleum hydrocarbons in anaerobic environment.

Water Res X

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.

Hydrophobic organic pollutants in aqueous environments are challenging to biodegrade due to limited contact between microorganisms, the pollutants and the electron acceptor, particularly under anaerobic or anoxic conditions. Here, we propose a novel strategy that uses inexpensive, dual-function elemental sulfur (S) to enhance biodegradation. Using petroleum hydrocarbons as the target pollutants, we demonstrated that hydrophobic and nonpolar S° can concentrate hydrocarbons while simultaneously serving as an electron acceptor to enrich hydrocarbon-degrading bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!