The rupture of cytoderm and extracellular polymeric substances (EPS), and competitive inhibition of methanogens are the main bottlenecks for medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS). This study proposes a promising ferrate (Fe (VI))-based technique to enhance MCFAs production from WAS through accelerating WAS disintegration and substrates transformation, and eliminating competitive inhibition of methanogens, simultaneously. Results shows that the maximal MCFAs production attains 8106.3 mg COD/L under 85 mg Fe/g TSS, being 58.6 times that of without Fe (VI) pretreatment. Mechanism exploration reveals that Fe (VI) effectively destroys EPS and cytoderm through electron transfer, reactive oxygen species generation (i.e., OH, O and O) and elevated alkalinity, resulting in the transfer of organics from solid to soluble phase and from macromolecules to intermediates. Generation and transformation of intermediates analyses illustrate that Fe (VI) facilitates hydrolysis, acidification and chain elongation (CE) but suppresses methanogenesis, promoting the targeted conversion of intermediates to MCFAs. Also, Fe (VI) pretreatment provides potential electron shuttles for chain elongation. Microbial community and functional genes encoding key enzymes analysis indicates that Fe (VI) screens key microorganisms and up-regulates functional genes expression involved in CE pathways. Overall, this technology avoids methanogens inhibitor addition and stimulates vivianite synthesis during MCFAs production from WAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.119457 | DOI Listing |
Animals (Basel)
December 2024
Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain.
The present study investigates the impact of supplementing diets with a synergistic blend of short- and medium-chain fatty acids (SCFAs-MCFAs) during the peripartum and lactation phases on early microbial colonization and the subsequent growth performance of newborn pigs. The experiment involved 72 sows and their litters, with a follow-up on 528 weaned pigs. Sows were fed either a control diet or a diet supplemented with SCFAs-MCFAs and the pigs were monitored for their growth performance and microbial populations.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Civil and Environmental Engineering, University of New South Wales, Sydney, 2052, NSW, Australia. Electronic address:
Transforming waste activated sludge (WAS) into medium-chain fatty acids (MCFAs) via chain elongation (CE) technology is sustainable, yet pH effects on this process are poorly understood. In this study, semi-continuous flow experiments demonstrated that WAS degradation was highest under alkaline pH (10) but unsuitable for CE. Continuous output of MCFAs indicated that CE could be successfully performed under acidic pH (5) and neutral pH (7).
View Article and Find Full Text PDFChemosphere
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China. Electronic address:
The effect of zero-valent iron (ZVI) dosage on medium-chain fatty acids (MCFAs) production from sewage sludge fermentation was explored. ZVI within a dosage of 2-20 g/L favored MCFAs production. Adding 20 g/L ZVI (ZVI20) increased the MCFAs and long-chain alcohols (LCAs) production to 4079.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany.
Medium chain fatty acids (MCFAs) are valuable platform compounds for the production of biotechnologically relevant chemicals such as biofuels and biochemicals. Two distinct pathways have been implemented in the yeast Saccharomyces cerevisiae for the biosynthetic production of MCFAs: (i) the mutant fatty acid biosynthesis (FAB) pathway in which the fatty acid synthase (FAS) complex is mutated and (ii) a heterologous multispecies-derived reverse β-oxidation (rBOX) pathway. Hexanoic acid has become of great interest as its acyl-CoA ester, hexanoyl-CoA, is required for the biosynthesis of olivetolic acid (OA), a cannabinoid precursor.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
November 2024
Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.
ER stress is a crucial factor in the progression of vascular cell diseases. Notably, octanoic acid (OA; C8:0) and decanoic acid (DA; C10:0), prominent components of medium-chain fatty acids (MCFAs), may provide potential health benefits. However, their effects on vascular smooth muscle cells (VSMCs) remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!