Graphene oxide disruption of homeostasis and regeneration processes in freshwater planarian Dugesia japonica via intracellular redox deviation and apoptosis.

Ecotoxicol Environ Saf

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Published: January 2023

The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.114431DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
regeneration processes
8
freshwater planarian
8
planarian dugesia
8
dugesia japonica
8
tissue regeneration
8
oxidative dna
8
dna damage
8
regeneration
6
oxidative
5

Similar Publications

Structural Repair of Reduced Graphene Oxide Promoted by Single-Layer Graphene.

Adv Sci (Weinh)

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.

High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).

View Article and Find Full Text PDF

Degradation of AFB in edible oil by aptamer-modified TiO composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity.

Food Chem

December 2024

Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:

Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.

View Article and Find Full Text PDF

Engineering and construction of multi-functional Janus separator for high-stability Li-CO battery.

J Colloid Interface Sci

December 2024

National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China. Electronic address:

Due to the high theoretical energy density, lithium-carbon dioxide (Li-CO) batteries provide unique advantages when using CO to generate electricity. However, the issues with lithium dendrite generated by uneven deposition and quick cathode passivation continue to impede the development of Li-CO batteries. In this work, a Janus separator with dual functionalities is created using an in-situ growth and hydrothermal technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!