Decoupling of Estuarine Hypoxia and Acidification as Revealed by Historical Water Quality Data.

Environ Sci Technol

Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania16802, United States.

Published: January 2023

Hypoxia and acidification are commonly coupled in eutrophic aquatic environments because aerobic respiration is usually dominant in bottom waters and can lower dissolved oxygen (DO) and pH simultaneously. However, the degree of coupling, which can be weakened by non-aerobic respiration and CaCO cycling, has not been adequately assessed. In this study, we applied a box model to 20 years of water quality monitoring data to explore the relationship between hypoxia and acidification along the mainstem of Chesapeake Bay. In the early summer, dissolved inorganic carbon (DIC) production in mid-bay bottom waters was dominated by aerobic respiration, contributing to DO and pH declines. In contrast, late-summer DIC production was higher than that expected from aerobic respiration, suggesting potential buffering processes, such as calcium carbonate dissolution, which would elevate pH in hypoxic waters. These findings are consistent with contrasting seasonal relationships between riverine nitrogen (N) loads and hypoxic and acidified volumes. The N loads were associated with increased hypoxic and acidified volumes in June, but only increased hypoxic volumes in August, when acidified volume declines instead. Our study reveals that the magnitude of this decoupling varies interannually with watershed nutrient inputs, which has implications for the management of co-stressors in estuarine systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c05949DOI Listing

Publication Analysis

Top Keywords

hypoxia acidification
12
aerobic respiration
12
water quality
8
bottom waters
8
dic production
8
hypoxic acidified
8
acidified volumes
8
increased hypoxic
8
decoupling estuarine
4
estuarine hypoxia
4

Similar Publications

Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.

Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Carbonic anhydrase IX inhibition as a path to treat neuroblastoma.

Br J Pharmacol

January 2025

Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

Background And Purpose: Tumour hypoxia frequently presents a major challenge in the treatment of neuroblastoma (NBL). The neuroblastoma cells produce carbonic anhydrase IX (CA IX), an enzyme crucial for the survival of cancer cells in low-oxygen environments.

Experimental Approach: We designed and synthesised a novel high-affinity inhibitor of CA IX.

View Article and Find Full Text PDF

Differential cell architecture and microenvironmental responses of pretumoral and tumoral cellular models exposed to coverslip-induced hypoxia.

Histochem Cell Biol

January 2025

Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.

The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.

View Article and Find Full Text PDF

Background: The typical pathological feature of pancreatic ductal adenocarcinoma (PDAC) is a significant increase in stromal reaction, leading to a hypoxic and poorly vascularized tumor microenvironment. Tumor cells undergo metabolic reprogramming, such as the Warburg effect, yet the underlying mechanisms are not fully understood.

Methods: Interference and overexpression experiments were conducted to analyze the in vivo and in vitro effects of USP7 on the growth and glycolysis of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!