The growing resistance of pathogenic bacteria to conventional antibiotics promotes the development of new antimicrobial agents, including peptides. Hydrogels composed of antimicrobial peptides (AMPs) may be applied as topical treatments for skin infection and wound regeneration. The unique antimicrobial and ultrashort-peptide FKF (Phe-Lys-Phe) was recently demonstrated to form bactericidal hydrogels. Here, we sought to improve the cyto-biocompatibility of FKF by combining FKF hydrogels with gelatin. Homogeneous hybrid hydrogels of FKF:gelatin were developed based on a series of self-assembly steps that involved mixing solutions of the two components with no covalent cross-linkers. The hydrogels were characterized for their structural features, dissolution, cyto-biocompatibility, and antibacterial properties. These hybrid hydrogels first release the antibacterial FKF assemblies, leaving the gelatinous fraction of the hydrogel to serve as a scaffold for tissue regeneration. Sponges of these hybrid hydrogels, obtained by lyophilization and rehydrated prior to application, exhibited enhanced antimicrobial activity compared to the hydrogels' formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.2c01331 | DOI Listing |
Zhongguo Ying Yong Sheng Li Xue Za Zhi
January 2025
Department of Life Science, SSSUHE, Kalaburagi, Karnataka, India.
The aim of this study is to explore and evaluate recent innovations in drug delivery systems (DDS) for biologics, focusing on enhancing stability and targeted delivery to improve the efficacy and safety of next-generation therapeutics. The most recent developments in a variety of DDS, such as nanoparticles, microneedles, hydrogels, and biodegradable polymers, were examined in depth. Information from peer-audited diaries, clinical preliminaries, and mechanical reports were blended to survey the presentation of these frameworks concerning dependability, designated conveyance, patient consistence, and controlled discharge.
View Article and Find Full Text PDFLangmuir
January 2025
Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy.
Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.
3D Print Addit Manuf
October 2024
Keene State College, Keene, New Hampshire, USA.
Due to its inbuilt ability to release biocompatible materials encapsulating living cells in a predefined location, 3D bioprinting is a promising technique for regenerating patient-specific tissues and organs. Among various 3D bioprinting techniques, extrusion-based 3D bioprinting ensures a higher percentage of cell release, ensuring suitable external and internal scaffold architectures. Scaffold architecture is mainly defined by filament geometry and width.
View Article and Find Full Text PDFGels
December 2024
Clinical Biochemistry Laboratory, Near East University Hospital, Nicosia 99138, North Cyprus, Turkey.
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!