Stomatal properties of Arabidopsis cauline and rice flag leaves and their contributions to seed production and grain yield.

J Exp Bot

Plant Physiology laboratory, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.

Published: March 2023

Cauline leaves on the inflorescence stem of Arabidopsis thaliana may play important roles in supplying photosynthetic products to sinks, such as floral organs. Flag leaves in rice (Oryza sativa) have a higher photosynthetic capacity than other leaves, and are crucial for increasing grain yield. However, the detailed properties of stomata in cauline and flag leaves have not been investigated. In Arabidopsis, stomatal conductance and CO2 assimilation rate were higher in cauline leaves under white light than in rosette leaves, consistent with higher levels of plasma membrane (PM) H+-ATPase, a key enzyme for stomatal opening, in guard cells. Moreover, removal of cauline leaves significantly reduced the shoot biomass by approximately 20% and seed production by approximately 46%. In rice, higher stomatal density, stomatal conductance, and CO2 assimilation rate were observed in flag leaves than in fully expanded second leaves. Removal of the flag leaves significantly reduced grain yield by approximately 49%. Taken together, these results show that cauline and flag leaves have important roles in seed production and grain yield through enhanced stomatal conductance and CO2 assimilation rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049919PMC
http://dx.doi.org/10.1093/jxb/erac492DOI Listing

Publication Analysis

Top Keywords

flag leaves
24
grain yield
16
leaves
12
seed production
12
cauline leaves
12
stomatal conductance
12
conductance co2
12
co2 assimilation
12
assimilation rate
12
production grain
8

Similar Publications

Reading the tea leaves: Acute pancreatitis as a red flag in intraductal papillary mucinous neoplasms of the pancreas.

Surgery

January 2025

Hepato Pancreato Biliary and Liver Transplant Surgery of the Department of Surgery Oncology and Gastroenterology (DiSCOG), Padova University, Padova, Italy. Electronic address:

View Article and Find Full Text PDF

Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.

View Article and Find Full Text PDF

Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).

Theor Appl Genet

January 2025

Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.

Article Synopsis
  • Identified 60 quantitative trait loci (QTL) for flag leaf morphology (FLM) traits through meta-genomics and validated nine major stable QTL using a doubled haploid population across multiple environments.
  • A novel QTL, Qflw.sxau-6BL, was fine-mapped to a 1.27 Mb region, which is linked to increased flag leaf width (FLW) and grain traits.
  • The findings highlight stable genomic regions associated with FLM traits and identify key genes that could enhance wheat performance in various conditions.
View Article and Find Full Text PDF

Irrigation practice, tillage method, and nitrogen (N) management are the three most important agronomic measures for wheat ( L.) production, but the combined effects on grain yield and wheat physiological characteristics are still poorly understood. We conducted a three-year split-split field experiment at the junction of the Loess Plateau and Huang-Huai-Hai Plain in China.

View Article and Find Full Text PDF

It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!