Amazonian mammal diversity is exceptionally high, yet new taxonomic discoveries continue to be made and many questions remain for understanding its diversification through time and space. Here we investigate the diversification of spiny rats in the genus Makalata, whose species are strongly associated with seasonally flooded forests, watercourses and flooded islands. We use a biogeographical approach based on a mitochondrial cytochrome b gene through divergence time estimation and reconstruction of ancestral areas and events. Our findings indicate an ancient origin of Makalata for the Guiana Shield and Eastern Amazonia as ancestral area. A first cladogenetic event led to a phylogeographic break into two broader clades of Makalata through dispersal, implying a pattern of western/Eastern Amazonian clades coinciding with the Purus Arch (middle Miocene). Most of subclades we infer originated between the late Pliocene to the early Pleistocene, with few recent exceptions in the early Pliocene through dispersal and vicariant events. The hypothesis of rivers as dispersal barriers is not corroborated for Makalata, as expected for mammalian species associated with seasonally flooded environments. We identify two key events for the expansion and diversification of Makalata species: the presence of geologically stable areas in the Guiana and Brazilian shields and the transition from lacustrine conditions in western Amazonia (Acre system) to a river system, with the establishment of the Amazon River transcontinental system and its tributaries. Our results are congruent with older geological scenarios for the Amazon basin formation (Miocene), but we do not discard the influence of recent dynamics on some speciation events and, mainly, on phylogeographic structuring processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754209PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276475PLOS

Publication Analysis

Top Keywords

rats genus
8
genus makalata
8
makalata species
8
species associated
8
associated seasonally
8
seasonally flooded
8
makalata
6
diversification
4
diversification amazonian
4
amazonian spiny
4

Similar Publications

Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions.

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

The objective of this investigation was to examine the effects of distinct dosages of infant formula and diverse formula constituents on the growth and development of weaned rats. Fifty specific pathogen-free (SPF) male Sprague-Dawley (SD) rats aged 3 weeks were divided into the basic diet group, 20% ordinary milk powder group, 20% special formula milk powder group, 30% ordinary milk powder group, and 30% special formula milk powder group randomly. After 28 days of feeding, compared with the basic diet group, the body mass and brain/body weight of rats in the 30% ordinary and special formula milk powder groups were decreased.

View Article and Find Full Text PDF

Leptospirosis is a neglected zoonotic disease that is endemic in tropical regions, including Ecuador. It is caused by spirochetes of the genus , which can infect humans through animal reservoirs such as rats and dogs, or through contact with contaminated water or soil. In March 2023, public health authorities declared a concerning outbreak of leptospirosis in Durán Cantón, located in the Coastal region of Ecuador.

View Article and Find Full Text PDF

Purpose: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by environmental triggers, including the commensal microbiota. Recent research has highlighted distinctive features of the gut microbiota in RA patients. This study investigates the therapeutic potential of berberine (BBR), a gut microbiota modulator known for its significant anti-RA effects, and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!