Ligand exchange is fundamentally related to the surface chemistry of nanoparticles in solution and is also an essential procedure for their synthesis and solution processing. The solution of ligand-bearing nanoparticles can be regarded as a dynamic equilibrium of bound and free ligands depending on the concentration and temperature. The direct experimental calibration of the ligand exchange dynamics relies on the in situ and real-time quantification of bound and free ligands. However, existing analytical strategies are often with limited applicability considering the requirement of special functional groups or the indirect detection of photoluminescence or reaction heat. In this work, we explore diffusion-based methods of solution-state nuclear magnetic resonance (NMR) as a general strategy to probe ligand exchange. Using comprehensive numerical simulations, we show that diffusion NMR with designable time sequences can effectively distinguish bound and free ligands and measure the exchange rate constants from 0.5 to 200 s under typical instrumental settings. These methods are demonstrated experimentally on colloidal CdSe nanocrystal systems with carboxylate or amine ligands whose exchange rates were previously undetectable. The kinetic rate constants, activation energies, and thermodynamic parameters of ligand exchange have been obtained under variable temperature conditions. We expect the diffusion NMR strategies to be generally applicable for calibrating the exchange of organic ligands on various nanoparticle systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c02964DOI Listing

Publication Analysis

Top Keywords

ligand exchange
20
diffusion nmr
12
bound free
12
free ligands
12
exchange
8
rate constants
8
ligand
5
ligands
5
nmr measuring
4
measuring dynamic
4

Similar Publications

NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer.

Arch Med Res

January 2025

Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Continuous-flow phosphate removal using Cry-Ca-COS Monolith: Insights from dynamic adsorption modeling.

Water Res X

May 2025

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.

This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).

View Article and Find Full Text PDF

Control of Interlocking Mode in Pd4L8 Cage Catenanes.

Angew Chem Int Ed Engl

January 2025

TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.

Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.

View Article and Find Full Text PDF

A charge-tagged N-heterocyclic carbene (NHC) has been synthesized and its utility in allowing the dynamic behaviour of metal complexes to be monitored in real time using electrospray ionization mass spectrometry demonstrated. This compound was used to prepare different metal-NHC complexes, and the kinetic behaviour of complex formation and ligand exchange was monitored in real time through the use of pressurized sample infusion electrospray mass spectrometry (PSI-ESI-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!