Further development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturization alongside nanomaterial implementation. In this work, improved electrochemical performance of an LaSrCoFeO (LSCF) cathode was achieved by the controlled modification of the LaSrCoO (LSC) nanocrystalline interlayer introduced between a porous oxygen electrode and dense electrolyte. The evaluation was carried out for various LSC layer thicknesses, annealing temperatures, oxygen partial pressures, and temperatures as well as subjected to long-term stability tests and evaluated in typical operating conditions in an intermediate temperature SOFC. Electrochemical impedance spectroscopy and a distribution of relaxation times analysis were performed to reveal the rate-limiting electrochemical processes that limit the overall electrode performance. The main processes with an impact on the electrode performance were the adsorption of gaseous oxygen O, dissociation of O, and charge transfer-diffusion (O). The introduction of a nanoporous and nanocrystalline interlayer with extended electrochemically active surface area accelerates the oxygen surface exchange kinetics and oxygen ion diffusions, reducing polarization resistances. The polarization resistance of the reference LSCF was lowered by one order of magnitude from 0.77 to 0.076 Ω·cm at 600 °C by the deposition of a 400 nm LSC interlayer at the interface. The developed electrode tested in the anode-supported fuel cell configuration showed a higher cell performance by 20% compared to the cell with the reference electrode. The maximum power density at 700 °C reaches 675 and 820 mW·cm for the reference cell and the cell with the LSC interlayer, respectively. Aging tests at 700 °C under a high load of 1 A·cm were performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18951 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
King Abdulaziz City for Science and Technology (KACST), Microelectronics and Semiconductors Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia.
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 China. Electronic address:
Vanadium-based materials exhibit a high theoretical capacity and diverse valence states, rendering them promising candidate anodes for lithium-ion batteries (LIBs). However, the cycling and rate performance are limited by their weak structural stability and electrical conductivity. Herein, a rational amorphization strategy has been developed to construct dual-anion vanadium oxysulfide nanoflowers (VSO NFs) with partial amorphous components and abundant oxygen vacancies as anode material for LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!