A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NF-κB drives epithelial-mesenchymal mechanisms of lung fibrosis in a translational lung cell model. | LitMetric

AI Article Synopsis

  • The study investigates how lung epithelial cells and fibroblasts interact in a model that mimics idiopathic pulmonary fibrosis (IPF), revealing that the initial population of epithelial cells is diverse and includes some with a basal cell identity.
  • Analysis showed that these cells and fibroblasts undergo different pro-fibrotic changes when cultured together, similar to those found in IPF patients' lungs.
  • The research highlights NF-κB signaling as a key factor in this process, linking epithelial dysfunction to fibrosis and suggesting that blocking NF-κB could reduce harmful cell changes and inflammation.

Article Abstract

In the progression phase of idiopathic pulmonary fibrosis (IPF), the normal alveolar structure of the lung is lost and replaced by remodeled fibrotic tissue and by bronchiolized cystic airspaces. Although these are characteristic features of IPF, knowledge of specific interactions between these pathological processes is limited. Here, the interaction of lung epithelial and lung mesenchymal cells was investigated in a coculture model of human primary airway epithelial cells (EC) and lung fibroblasts (FB). Single-cell RNA sequencing revealed that the starting EC population was heterogenous and enriched for cells with a basal cell signature. Furthermore, fractions of the initial EC and FB populations adopted distinct pro-fibrotic cell differentiation states upon cocultivation, resembling specific cell populations that were previously identified in lungs of patients with IPF. Transcriptomic analysis revealed active NF-κB signaling early in the cocultured EC and FB, and the identified NF-κB expression signatures were found in "HAS1 High FB" and "PLIN2+ FB" populations from IPF patient lungs. Pharmacological blockade of NF-κB signaling attenuated specific phenotypic changes of EC and prevented FB-mediated interleukin-6, interleukin-8, and CXC chemokine ligand 6 cytokine secretion, as well as collagen α-1(I) chain and α-smooth muscle actin accumulation. Thus, we identified NF-κB as a potential mediator, linking epithelial pathobiology with fibrogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977429PMC
http://dx.doi.org/10.1172/jci.insight.154719DOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
8
identified nf-κb
8
lung
6
nf-κb
5
nf-κb drives
4
drives epithelial-mesenchymal
4
epithelial-mesenchymal mechanisms
4
mechanisms lung
4
lung fibrosis
4
fibrosis translational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!