Parkinson's disease (PD) is a common progressive neurodegenerative disorder with motor and nonmotor symptoms. Recent studies demonstrate various susceptibility loci and candidate genes for familial forms of the disease. However, the genetic basis of the familial form of early-onset PD (EOPD) is not widely studied in the Iranian population. Therefore, the present study aimed to investigate the possible causative genetic variants responsible for developing EOPD among Iranian patients. Iranian patients with a clinical diagnosis of Parkinson's disease were evaluated, and 12 consanguineous families with at least two affected individuals with early-onset PD (EOPD) were chosen to enroll in the present study. An expert neurologist group examined these families. Whole-exome sequencing (WES) was performed on PD patients, and the possible causative genetic variants related to the development of PD were reported. Exome sequencing (WES) was performed on every PD patient and revealed that patients had novel genetic variants in PRKN, PARK7, and PINK1 genes. All the genetic variants were in homozygous status and none of these variants were previously reported in the literature. Moreover, these genetic variants were "pathogenic" based on bioinformatic studies and according to the American College of Medical Genetics (ACMG). The present research revealed some novel variants for EOPD among the Iranian population. Further functional studies are warranted to confirm the pathogenicity of these novel variants and establish their clinical application for the early diagnosis of EOPD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-022-02085-9DOI Listing

Publication Analysis

Top Keywords

genetic variants
20
parkinson's disease
12
novel variants
12
variants
9
whole-exome sequencing
8
early-onset eopd
8
iranian population
8
causative genetic
8
eopd iranian
8
iranian patients
8

Similar Publications

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Background: Females with hypertrophic cardiomyopathy present at a more advanced stage of the disease and have a higher risk of heart failure and death. The factors behind these differences are unclear. We aimed to investigate sex-related differences in clinical and genetic factors affecting adverse outcomes in the Sarcomeric Human Cardiomyopathy Registry.

View Article and Find Full Text PDF

Gain-of-function variants in the voltage-gated sodium channel Nav1.7, encoded by the SCN9A gene, have previously been identified in patients with erythromelalgia, a clinical diagnosis defined by intermittent attacks of painful, hot, swollen, and red skin, predominantly involving the hands and feet. Symptoms are induced or aggravated by warming and relieved by cooling.

View Article and Find Full Text PDF

Genetic determinants of COVID-19 severity and mortality: Alu 287 bp polymorphism and , , expression in hospitalized patients.

PeerJ

January 2025

Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.

View Article and Find Full Text PDF

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!