Redox homeostasis at SAM: a new role of HINT protein.

Planta

Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, Bairro Lagoa Nova, Natal, RN, 59072-970, Brazil.

Published: December 2022

ScHINT1 was identified at sugarcane SAM using subtractive libraries. Here, by bioinformatic tools, two-hybrid approach, and biochemical assays, we proposed that its role might be associated to control redox homeostasis. Such control is important for plant development and flowering transition, and this is ensured with some protein partners such as PAL and SBT that interact with ScHINT1. The shoot apical meristem transition from vegetative to reproductive is a crucial step for plants. In sugarcane (Saccharum spp.), this process is not well known, and it has an important impact on production due to field reduction. In view of this, ScHINT1 (Sugarcane HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN) was identified previously by subtractive cDNA libraries using Shoot Apical Meristem (SAM) by our group. This protein is a member of the HIT superfamily that was composed of hydrolase with an AMP site ligation. To better understand the role of ScHINT1 in sugarcane flowering, here its function in SAM was characterized using different approaches such as bioinformatics, two-hybrid assays, transgenic plants, and biochemical assays. ScHINT1 was conserved in plants, and it was grouped into four clades (HINT1, HINT2, HINT3, and HINT4). The 3D model proposed that ScHINT1 might be active as it was able to ligate to AMP subtract. Moreover, the two-hybrid approach identified two protein interactions: subtilase and phenylalanine ammonia-lyase. The evolutionary tree highlighted the relationships that each sequence has with specific subfamilies and different proteins. The 3D models constructed reveal structure conservation when compared with other PDB-related crystals, which indicates probable functional activity for the sugarcane models assessed. The interactome analysis showed a connection to different proteins that have antioxidative functions in apical meristems. Lastly, the transgenic plants with 35S::ScHINT1_AS (anti-sense orientation) produced more flowers than wild-type or 35S::ScHINT1_S (sense). Alpha-tocopherol and antioxidant enzymes measurement showed that their levels were higher in 35S::ScHINT_S plants than in 35S::ScHINT1_AS or wild-type plants. These results proposed that ScHINT1 might have an important role with other proteins in orchestrating this complex network for plant development and flowering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-022-04044-5DOI Listing

Publication Analysis

Top Keywords

redox homeostasis
8
two-hybrid approach
8
biochemical assays
8
plant development
8
development flowering
8
shoot apical
8
apical meristem
8
schint1 sugarcane
8
transgenic plants
8
proposed schint1
8

Similar Publications

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Epigenetic Control of Redox Pathways in Cancer Progression.

Antioxid Redox Signal

January 2025

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Astragaloside IV can mitigate heat stress-induced tissue damage through modulation of the Keap1-Nrf2 signaling pathway in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China. Electronic address:

This study investigated the potential protective effect of AS-IV against heat stress-induced tissue damage in grass carp (Ctenopharyngodon idella). Grass carp were injected intraperitoneally with 0, 2, 4, and 8 mg/kg of AS-IV for three consecutive days, and then subjected to heat stress (35 ± 0.5°C); thereafter, histopathological analyses of the liver and spleen were performed at 0, 6, 24, and 48 h, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!