A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinspired 3D-Printed MXene and Spidroin-Based Near-Infrared Light-Responsive Microneedle Scaffolds for Efficient Wound Management. | LitMetric

Biomedical dressings have been comprehensively explored for wound healing; however, the complicated manufacturing process and mono-function of the dressing remain critical challenges for further applications. Here, a versatile extrusion three-dimensional (3D) printing strategy to prepare MXene and spidroin-incorporated microneedle scaffolds with photothermal responsive and self-healing properties for promoting wound healing is proposed. Inspired by the cactus, the microneedle scaffold is composed of a top porous scaffold, and microneedles whose inverse opal (IO) photonic crystal (PC) structure and the ample space between the scaffold gaps endow the microneedle scaffold with high drug-carrying capacity. Furthermore, the excellent electrical and photothermal properties of MXene allow the microneedle scaffold to perform sensitive wound movement monitoring and controlled drug release under near-infrared irradiation. Moreover, the extensive hydrogen bonding and Schiff base between the spidroin, polyurethane (PU), and aloe vera gel (avGel) molecules conferred high self-healing and mechanical performance to the microneedle scaffold. experiments with rat models of wounds have shown that drug-laden microneedle scaffolds under near-infrared (NIR) light can promote the recovery of full-skin wounds. These unique characteristics suggest that 3D-printed multifunctional microneedle scaffolds show great potential for applications in facilitating wound healing and will find widespread applications in wound management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c16277DOI Listing

Publication Analysis

Top Keywords

microneedle scaffolds
16
microneedle scaffold
16
wound healing
12
microneedle
8
wound management
8
wound
6
scaffold
6
bioinspired 3d-printed
4
3d-printed mxene
4
mxene spidroin-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!