Implementing life cycle sustainability assessment for improved space mission design.

Integr Environ Assess Manag

School of Engineering & Built Environment, Built Environment Asset Management (BEAM) Centre, Glasgow Caledonian University, Glasgow, UK.

Published: July 2023

Within the space sector, the application of Environmental Life Cycle Assessment (E-LCA) is beginning to emerge as a credible and compelling method for scientifically quantifying environmental impacts of space missions. However, E-LCA does not fully align with the concept of triple-bottom-line sustainability, while the combination of all three sustainability dimensions (environment, society, and economy) within a single life cycle study has thus far never been attempted within the space industry. Moving toward a Life Cycle Sustainability Assessment (LCSA) is, therefore, a logical next step for the space sector to allow these three sustainability dimensions to be addressed. Consequently, this article presents the underlying principles of a new LCSA framework for space missions and demonstrates its applicability for improving system-level design concepts based on the interaction between sustainability dimensions. The framework was formed based on a systematic literature review to analyze the background, issues, and knowledge gaps related to life cycle methodologies, as well as context-specific sustainability aspects. The framework has been implemented within a life cycle database called the Strathclyde Space Systems Database (SSSD). Using the SSSD, the framework was tested on a mission concept called Moon Ice Observation Satellite to demonstrate how changes in the design for a circular economy and other sustainability-based principles will affect the functionality of the mission at the system level. It is envisaged that this framework will enable engineers to create sustainable space systems, technologies, and products that are not only cost-efficient, eco-efficient, and socially responsible, but also ones that can easily justify and evidence their sustainability. Integr Environ Assess Manag 2023;19:1002-1022. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947463PMC
http://dx.doi.org/10.1002/ieam.4722DOI Listing

Publication Analysis

Top Keywords

life cycle
24
sustainability dimensions
12
sustainability
8
cycle sustainability
8
sustainability assessment
8
space
8
space sector
8
space missions
8
three sustainability
8
space systems
8

Similar Publications

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

The number of high-quality genomes is rapidly increasing across taxa. However, it remains limited for coral reef fish of the Pomacentrid family, with most research focused on anemonefish. Here, we present the first assembly for a Pomacentrid of the genus .

View Article and Find Full Text PDF

Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems.

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!