Exercise and mitochondrial remodeling to prevent age-related neurodegeneration.

J Appl Physiol (1985)

Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.

Published: January 2023

Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829476PMC
http://dx.doi.org/10.1152/japplphysiol.00611.2022DOI Listing

Publication Analysis

Top Keywords

mitochondrial remodeling
20
mitochondrial
13
mitochondrial dynamics
12
brain health
12
age-related neurodegeneration
8
mitochondrial function
8
mitochondrial protein
8
protein turnover
8
turnover mitochondrial
8
health current
8

Similar Publications

Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice.

J Proteomics

December 2024

School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:

Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Ferrostatin supplementation improves microalgal activities and nutrient removal in wastewater under high temperature shock: From ferroptosis-like inhibition to enhanced oxidation resistance.

Water Res

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China. Electronic address:

High temperature (HT) shock is one of environmental stressors suppressing microalgal activities in microalgal wastewater bioremediation system. However, its inhibition mechanism and how to alleviate such suppression remain inadequately understood. This study confirmed a transient ferroptosis as a novel form of programmed cell death in a wastewater-indigenous Chlorella sp.

View Article and Find Full Text PDF

Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation.

Poult Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!