Polarimetric data is nowadays used to build recognition models for the characterization of organic tissues or the early detection of some diseases. Different Mueller matrix-derived polarimetric observables, which allow a physical interpretation of a specific characteristic of samples, are proposed in literature to feed the required recognition algorithms. However, they are obtained through mathematical transformations of the Mueller matrix and this process may loss relevant sample information in search of physical interpretation. In this work, we present a thorough comparative between 12 classification models based on different polarimetric datasets to find the ideal polarimetric framework to construct tissues classification models. The study is conducted on the experimental Mueller matrices images measured on different tissues: muscle, tendon, myotendinous junction and bone; from a collection of 165 ex-vivo chicken thighs. Three polarimetric datasets are analyzed: (A) a selection of most representative metrics presented in literature; (B) Mueller matrix elements; and (C) the combination of (A) and (B) sets. Results highlight the importance of using raw Mueller matrix elements for the design of classification models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202200308DOI Listing

Publication Analysis

Top Keywords

mueller matrix
12
classification models
12
models based
8
physical interpretation
8
polarimetric datasets
8
matrix elements
8
models
5
polarimetric
5
mueller
5
optimizing classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!