Rapid Ring-Opening Polymerization of γ-Butyrolactone toward High-Molecular-Weight Poly (γ-butyrolactone) by an Organophosphazene Base and Bisurea Binary Catalyst.

Chem Asian J

Key Laboratory of Biobased Polymer Materials Shandong Provincial Education Department College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Published: February 2023

The low temperature condition, long reaction time and associated high energy inputs involved in the polymerization process still hampered the scalable production of poly(γ-butyrolactone) (PγBL) via ring-opening polymerization (ROP) of low strained γBL due to its unfavorable thermodynamics. In this contribution, we presented the rapid ROP of γBL using a bisurea in combination with an organophosphazene base as the binary catalyst. Well-defined PγBL samples with various terminal groups were prepared by using different alcohol initiators. The bisurea as a co-catalyst exhibited much higher catalytic activity even compared to the most active monourea in previous report as supported by the kinetic experiments. A moderate monomer conversion of 61% was achieved within 10 mins, producing high-molecular-weight PγBL with M up to 37.5 kDa and good mechanical properties. The short polymerization time considerably reduced the energy cost for the ROP of γBL conducted at low temperature condition. This study may clear away obstacles for the scalable production and practical applications for PγBL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202201107DOI Listing

Publication Analysis

Top Keywords

ring-opening polymerization
8
organophosphazene base
8
binary catalyst
8
low temperature
8
temperature condition
8
scalable production
8
rop γbl
8
rapid ring-opening
4
polymerization
4
polymerization γ-butyrolactone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!