Background: Keyin pill (KP), a patented medicine in China, is used to treat psoriasis. However, KP has been reported to have liver toxicity, but its toxic substance basis and underlying mechanisms remain unclear. Therefore, this study aimed to explore the pharmacological mechanisms and components of KP-induced liver injury through animal experiments, UPLC-QTOF/MS combined with network pharmacology.
Methods: Firstly, based on the immune stress mouse model, liver function parameters and hematoxylin-eosin (H&E) staining were detected to investigate KP-induced liver injury. The UPLC-QTOF/MS method was used to identify the components of KP. CTD database and literature mining were further applied to screen nonliver protective components. Subsequently, the nonliver protective components and their corresponding targets and targets of hepatotoxicity were analyzed by the method of network pharmacology. Finally, key targets from networked pharmacology were examined by the enzyme-linked immunosorbent assay (ELISA) and molecular docking.
Results: Our results indicated that KP had hepatotoxicity in male Kunming mice, which could favor hepatocyte necrosis and infiltration of inflammatory cells. A total of 70 nonliver protective compounds were identified and screened. The results of network pharmacology illustrated that methoxsalen, obacunone, limonin, and dictamnine might be the main compounds that caused liver damage. The potential hepatotoxicity mechanisms of KP might be through the IL17 and apoptosis pathways to regulate IL6, TNF, CASP3, and CASP8 targets, thereby causing inflammation, excessive release of factors, and hepatocyte necrosis. The results of the ELISA experiments indicated that KP could increase the release of IL6 and TNF inflammatory factors in liver tissues. Molecular docking suggested that methoxsalen, obacunone, limonin, and dictamnine had moderate binding ability with CASP3 and CASP8.
Conclusion: In this study, the material basis and potential pharmacological mechanisms of KP-induced liver injury were preliminarily explored. Our research provides the initial theoretical basis for reducing the toxicity of KP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744617 | PMC |
http://dx.doi.org/10.1155/2022/9916949 | DOI Listing |
Alcohol Clin Exp Res (Hoboken)
January 2025
Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea.
Background: Therapeutic options for managing intestinal and hepatic inflammation associated with alcohol consumption, a prevalent health problem worldwide, remain unavailable. This study examines the potential efficacy of polyethylene glycol (PEG) in mitigating the intestinal and hepatic damage, employing a mouse model for assessment.
Methods: First, the mixture of ethanol (4 g/kg body weight) and PEG (2 g/kg body weight) or an equivalent volume of vehicle was administered orally alcohol consumption.
J Clin Gastroenterol
December 2024
Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China.
Aim: To compare the respective clinical and pathologic features of antimitochondrial antibodies-negative (AMA-negative) primary biliary cirrhosis (PBC) and cholestatic type drug-induced liver injury (DILI) for clinical differential diagnosis.
Patients And Methods: Clinical data from 23 patients with AMA-negative PBC and 39 patients with cholestatic type DILI, treated at our hospital between January 2013 and January 2024, were collected and retrospectively analyzed.
Results: The cholestatic type DILI group exhibited a higher incidence of malaise and abdominal pain compared with the AMA-negative PBC group.
Hepatol Commun
November 2024
Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
Background: HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors.
Methods: A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells.
Hepatol Commun
November 2024
Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.
View Article and Find Full Text PDFHepatol Commun
November 2024
Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!