The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate expression or the functional consequences of that regulation. The gene family includes six members, to . However, is a pseudogene, TSPYL5 is only known to regulates the expression of , and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that knockdown had a greater effect on the activation of Wnt signaling than did or knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and β-catenin regulated expression in opposite directions and TSPYL1 appeared to regulate expression by blocking β-catenin binding to the TCF7L2 transcription factor on the promoter. In β-catenin and TSPYL1 double knockdown cells, expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 Wnt/β-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742362 | PMC |
http://dx.doi.org/10.3389/fphar.2022.1047318 | DOI Listing |
Alzheimers Dement
December 2024
Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Introduction: Alzheimer's disease (AD) shows significant sex differences in prevalence and clinical manifestations, but the underlying molecular mechanisms remain unclear.
Methods: This study used a large-scale, single-cell transcriptomic atlas of the human prefrontal cortex to investigate sex-dependent molecular changes in AD. Our approach combined cell type-specific and sex-specific differential gene expression analysis, pathway enrichment, gene regulatory network construction, and cell-cell communication analysis to identify sex-dependent changes.
Mol Cancer
December 2024
Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF).
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
December 2024
Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:
Segetalin B (SB) has shown promise in mitigating osteoporosis in ovariectomized (OVX) mice, though its underlying mechanisms remain unclear. This study investigates how SB promotes bone formation through Phospholipase D1 (PLD1) activation in OVX models. In vitro, bone marrow-derived mesenchymal stem cells (BMSCs) from OVX mice were cultured for osteogenic differentiation.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Electronic address:
Hepatocellular carcinoma (HCC) is one of the common malignant tumors. Complement system has become a new focus of cancer research by changing the biological behavior of cancer cells to influence the growth of cancer. Recent studies reported the complement C5a-C5aR1 axis can promote the malignant phenotype of multiple tumors through various signaling pathways.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
One Health Research Group, Universidad de las Americas, Quito, Ecuador.
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from chromaffin cells, with 80-85% originating in the adrenal medulla and 15-20% from extra-adrenal chromaffin tissues (paragangliomas). Approximately 30-40% of PPGLs have a hereditary component, making them one of the most genetically predisposed tumor types. Recent advances in genetic research have classified PPGLs into three molecular clusters: pseudohypoxia-related, kinase-signaling, and -signaling pathway variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!