Seed germination is a key stage in the life history of plants, which has a crucial effect on plant community structure. Climate change has substantially altered the surface soil temperature and light availability, which can affect seed germination. However, whether the seed germination of different functional groups is affected by the interactions of light and temperature remains unclear. Under laboratory conditions, we examined the effects of low temperature and darkness, as well as their interaction, on the seed germination of 16 species belonging to three plant functional groups (annual and biennials, perennial grasses, and perennial forbs) in a typical steppe, Northern China. We found that low temperature had a significant negative effect on seed germination of all species. Low temperature significantly decreased the final germination percentage and germinative force of the three plant functional groups, and the germination duration of perennial grasses. Darkness significantly decreased the germinative force of perennial forbs and total seeds, and the germination duration of perennial grasses. The interactive effects of light and temperature on the seed final germination percentage and germinative force of perennial grass indicated that darkness strengthened the inhibitory effect of low temperature on the seed germination of the grass functional group. Our study indicate that the seed germination of different plant functional groups varied greatly in response to changing environmental conditions. Our results suggest that future climate change could alter the regeneration and species composition of plant communities through changing seed germination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744151 | PMC |
http://dx.doi.org/10.7717/peerj.14485 | DOI Listing |
Sci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFBraz J Biol
January 2025
Embrapa Agrobiologia, Seropédica, RJ, Brasil.
The objective was to evaluate the sensitivity of Piptadenia gonoacantha seeds to desiccation and storage conditions. The seeds were subjected to artificial drying in a forced air convection oven (39.7 °C ± 0.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Department of Biochemistry and Molecular Biology, Saitama University.
Root parasitic broomrape ( and spp.) weeds cause devastating damage to agricultural production all around the world. The seeds of broomrapes germinate when they are exposed to germination stimulants, mainly strigolactones (SLs), released from the roots of any plant species; however, broomrapes parasitize only dicot plants.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Chinese Academy of Agricultural Sciences, State Key Laboratory of Efficient Utilization of Arid and Semiarid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Beijing, China.
Mowing is a primary practice in temperate meadows, which are severely degraded due to frequent mowing, overgrazing, and other factors, necessitating restoration and sustainable management. The natural recovery of these grasslands hinges on their germinable soil seed banks, which form the basis for future productivity. Thus, germinable soil seed banks are critical for restoring overexploited meadows.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Nantes, France.
Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!