Heavy metal (HM) pollution is extremely deleterious because of the toxicity they exert on human beings, animals, and plants. HMs are recalcitrant to degradation, and hence persistent in the environment for a longer duration adding to the concern. HMs at high concentrations have adverse effects on the production of food as they affect the metabolic activity of plants. HMs have serious implications for human health, reaching the tissue via direct ingestion, dermal contact, inhalation, and adsorption. Several methods have been explored for the eradication of HMs from the environment. Conventional methods of metal removal are constrained by the processing problems, expenses, and the generation of toxic sludge, therefore more research is now focused on the use of bacteria, fungi, plants, and diatoms for the removal of metal ions from the environment. In this context, this review article sheds light on the distribution of HMs in the environment, their sources, and the ecotoxicity they exert on the environment and living beings. The sustainable remedies to decontaminate the environment and the current knowledge and strategies to minimize HM toxicity are also discussed along with the recent developments in the use of nanoparticles and diatoms for HM removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742998PMC
http://dx.doi.org/10.1016/j.crmicr.2022.100166DOI Listing

Publication Analysis

Top Keywords

heavy metal
8
metal pollution
8
plants hms
8
hms environment
8
diatoms removal
8
environment
6
hms
5
perspective heavy
4
metal
4
pollution remediation
4

Similar Publications

Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.

View Article and Find Full Text PDF

Facile synthesis of plasmonic BP@Au nanomatrix for sensitive detection of irinotecan and its active SN-38 metabolite via laser desorption/ionization mass spectrometry.

Mikrochim Acta

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.

A new methodology is presented for the rapid, specific, and sensitive detection of irinotecan (CPT-11), a chemotherapeutic agent utilized in the treatment of cancer, along with its metabolically active derivative, SN-38, via laser desorption/ionization mass spectrometry (LDI MS). The method includes the detection of camptothecin (CPT), which can be utilized as an internal standard for the quantitative assessment of both CPT-11 and SN-38 in mouse serum. The approach utilizes a plasmonic two-dimensional (2D) black phosphorus nanosheet (BPN)-gold nanomatrix (BP@Au) in LDI MS.

View Article and Find Full Text PDF

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

Impact of a lagoon with high anthropic activity on a World Heritage Site.

Environ Monit Assess

January 2025

Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.

The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!