Diatoms are important microorganisms involved in global primary production, nutrient cycling, and carbon sequestration. A unique feature of diatoms is their silica frustules, which impact sinking speed, defense against predators and viruses, and growth cycling. Thus, frustules are inherently linked to their role in ecosystems and biogeochemical cycles. However, constraints on cellular silicon levels remain unclear and few existing models resolve diatom elemental stoichiometry to specifically include variable silicon levels. Here, we use a coarse-grained model of the diatom, Thalassiosira pseudonana, compared with laboratory results to illustrate the relationship of silicon uptake with elemental stoichiometry of other nutrients. The model-data comparison suggests the balance between growth rate and silicon uptake constrains the amount of cellular silicon. Additionally, it expresses relationships between silicon, nitrogen, phosphorus, and carbon to changing growth rates in nitrogen-limited and phosphorus-limited regimes. First, our model-data comparison suggests Si uptake hits a maximum cellular quota at low growth rates and below this maximum there is independent Si uptake. In each nutrient regime, Si:N, Si:P, and Si:C decrease exponentially with growth rate when Si is below the maximum limit. This is explained by independent Si uptake and increased loss of Si to new cells. These results provide predictions of diatom stoichiometry and allocation, which can be used in ecosystem models to differentiate phytoplankton types to better represent diatoms' contribution to global biogeochemical cycles and ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743000 | PMC |
http://dx.doi.org/10.1016/j.crmicr.2022.100164 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFSci Rep
January 2025
Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness.
View Article and Find Full Text PDFMolecules
December 2024
Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland.
Heteroleptic coumarin-based silver(I) complexes with improved solubility profiles were synthesised using either triphenylphosphine or an -heterocyclic carbene as adduct ligands, and were fully characterised using IR and NMR spectroscopy, elemental analysis, and, where possible, X-ray crystallography. The triphenylphosphine adducts formed well-resolved structures, where the oxyacetate ligands asymmetrically chelated the silver(I) ion in a bidentate chelating mode, and the silver(I) ion was also bound to two triphenylphosphine ligands. The solubility profile and photostability of the adducts were considerably improved compared to those of previously isolated simple coumarin silver(I) complexes.
View Article and Find Full Text PDFEcol Lett
January 2025
Center for Reservoir and Aquatic System Research, Baylor University, Waco, Texas, USA.
Diazotrophic cyanobacteria can overcome nitrogen (N)-limitation by fixing atmospheric N; however, this increases their energetic, iron, molybdenum, and boron costs. It is unknown how current and historic N-supplies affect cyanobacterial elemental physiology beyond increasing demands for elements involved in N-fixation. Here, we examined the changes in pigment concentrations, N-storage, and the ionome (i.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens 30602, Georgia, United States.
This study investigated the speciation and aqueous dissolution of macronutrients in fire ash from diverse ecosystems and speciation of ash and smoke from laboratory burning, exploring the variations and their causes. The speciation of phosphorus (P), calcium (Ca), and potassium (K) in fire ash from five globally distributed ecosystems was characterized by using X-ray absorption spectroscopy and sequential fractionation. Aqueous dissolution of the macronutrients was measured by batch experiments at acidic and alkaline pHs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!