Background: Alzheimer's disease has become one of the most common neurodegenerative diseases worldwide, which seriously affects the health of the elderly. Early detection and intervention are the most effective prevention methods currently. Compared with traditional detection methods such as traditional scale tests, electroencephalograms, and magnetic resonance imaging, speech analysis is more convenient for automatic large-scale Alzheimer's disease detection and has attracted extensive attention from researchers. In particular, deep learning-based speech analysis and language processing techniques for Alzheimer's disease detection have been studied and achieved impressive results.

Methods: To integrate the latest research progresses, hundreds of relevant papers from ACM, DBLP, IEEE, PubMed, Scopus, Web of Science electronic databases, and other sources were retrieved. We used these keywords for paper search: (Alzheimer OR dementia OR cognitive impairment) AND (speech OR voice OR audio) AND (deep learning OR neural network).

Conclusions: Fifty-two papers were finally retained after screening. We reviewed and presented the speech databases, deep learning methods, and model performances of these studies. In the end, we pointed out the mainstreams and limitations in the current studies and provided a direction for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749308PMC
http://dx.doi.org/10.1186/s13195-022-01131-3DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
16
speech analysis
12
disease detection
12
deep learning-based
8
learning-based speech
8
deep learning
8
speech
5
detection
5
deep
4
alzheimer's
4

Similar Publications

Validating the Accuracy of Parkinson's Disease Clinical Diagnosis: A UK Brain Bank Case-Control Study.

Ann Neurol

January 2025

Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.

Objective: Despite diagnostic criteria refinements, Parkinson's disease (PD) clinical diagnosis still suffers from a not satisfying accuracy, with the post-mortem examination as the gold standard for diagnosis. Seminal clinicopathological series highlighted that a relevant number of patients alive-diagnosed with idiopathic PD have an alternative post-mortem diagnosis. We evaluated the diagnostic accuracy of PD comparing the in-vivo clinical diagnosis with the post-mortem diagnosis performed through the pathological examination in 2 groups.

View Article and Find Full Text PDF

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

AI-powered FDG-PET radiomics: a door to better Alzheimer's disease classification?

Eur Radiol

January 2025

Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!