The aim of this work was to analyze and compare the removal capability, conical internal hex implant-abutment connection damage and thermal effect using ultrasonic and drilling techniques for the extraction of fractured abutment screws. Twenty abutment screws were randomly fractured into twenty dental implants and randomly extracted using the following removal techniques: Group A: drilling technique without irrigation (n = 10) (DT) and Group B: ultrasonic technique without irrigation (n = 10) (UT). The dental implants were submitted to a preoperative and postoperative micro-computed tomography (micro-CT) scan to obtain a Standard Tessellation Language (STL) digital file that determined the wear comparison by morphometry. Moreover, the thermographic effects generated by the DT and UT removal techniques were registered using a thermographic digital camera. Comparative analysis was performed by comparing the volumetric differences (mm) between preoperative and postoperative micro-CT scans and thermographic results (°C) using the Student t test. The DT extracted 8/10 and the US 9/10 abutment screws. The pairwise comparison revealed statistically significant differences between the volumetric differences of postoperative and preoperative micro-CT scans of the DT (- 0.09 ± - 0.02mm) and UT (- 0.93 ± - 0.32mm) study groups (p = 0.0042); in addition, the pairwise comparison revealed statistically significant differences between the thermographic values of the DT (38.12 ± - 10.82 °C) and UT (78.52 ± 5.43 °C) study groups (p < 0.001). The drilling technique without irrigation provides a less removal capability, less conical internal hex implant-abutment connection damage and less thermal effect than ultrasonic technique for the extraction of fractured abutment screws; however, the ultrasonic technique resulted more effective for the extraction of fractured abutment screws.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749224 | PMC |
http://dx.doi.org/10.1186/s12903-022-02653-w | DOI Listing |
J Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFJ Adv Prosthodont
December 2024
Department Prosthetic Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia.
Purpose: This study assessed the microgap width and adhesion of three bacterial species in four dental implants with different interlocks under four screwing torques.
Materials And Methods: Ten samples of four implant systems with various interlockings, including full-hexagonal (FHI), cylindrical-conical trilobe-index (TLI), Morse-taper with octagon terminal index (OI), and hexagonal interlock (slip-fit) (HI-SF), were used. The abutments were screwed to the fixtures under torques of 10, 20, 30, and 40 Ncm.
J Dent
January 2025
Senior Research and Teaching Assistant, Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich 8032, Switzerland. Electronic address:
Objectives: A new abutment-free implant connection allows for direct screwing of FDPs on implants to avoid complications caused by cement rests or screw loosening, which may affect to screw torque and load distribution. The objective of this study was to test the initial (Fi) and final failure (Ff) loads and torque changes of abutment-free monolithic zirconia CAD-CAM fixed dental prostheses (FDPs) compared to titanium FDPs on different abutment designs.
Methods: Three-unit screw-retained FDPs (n = 50) on two implants (n = 100) were divided into groups (n = 10) based on the implant-abutment connection and material of the supra-structure: (1) abutment-free monolithic CAD-CAM zirconia FDP (Abut-free-Zr), (2) abutment-free veneered titanium FDPs (Abut-free-Ti), (3) monolithic zirconia FDPs with titanium base abutments (Zr-Ti-Base), (4) monolithic zirconia FDPs on multi-unit abutments (Zr-MU), (5) veneered titanium FDP on multi-unit abutments (Ti-MU).
J Prosthet Dent
December 2024
Professor, Department of Restorative Dentistry, University of Washington School of Dentistry, Seattle, Wash. Electronic address:
Statement Of Problem: The angled screw channel (ASC) design has been well accepted for implant prostheses. However, investigation into the behavior of the ASC connection is sparse.
Purpose: The purpose of this in vitro study was to assess the effect of cyclic loading on the internal connection of an ASC system compared with straight access systems by measuring reverse torque values (RTVs) and using microcomputed tomography (µCT) imaging.
BMC Oral Health
December 2024
Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
Background: The selection guideline for the implant-supported bar connectors (ISBC) of hybrid denture is lacking. This study investigated the maximum von Mises stress (vMS), stress distribution, and displacement of various geometric ISBC in mandibular hybrid dentures, as well as the maximum principal stress (σmax) in the acrylic resin part, through finite element analysis.
Methods: Four different geometric cross-sectional patterns for mandibular ISBC-L, Y, I, and Square-of equal volume, based on the "All-on-4" concept, were created.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!