This report presents n-type single-walled carbon nanotubes (SWCNT) films with ultra-long air stability using a cationic surfactant and demonstrates that the n-type Seebeck coefficient can be maintained for more than two years, which is the highest stability reported thus far to the best of our knowledge. Furthermore, the SWCNT films exhibit an extremely low thermal conductivity of 0.62 ± 0.08 W/(m·K) in the in-plane direction, which is very useful for thin-film TEGs. We fabricated all-carbon-nanotube TEGs, which use p-type SWCNT films and the n-type SWCNT films developed, and their air-stability was investigated. The TEGs did not degrade for 160 days and exhibited an output voltage of 24 mV, with a maximum power of 0.4 µW at a temperature difference of 60 K. These results open a pathway to enable the widespread use of carbon nanotube TEGs as power sources in IoT sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748887 | PMC |
http://dx.doi.org/10.1038/s41598-022-26108-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!