Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Benzisothiazolinone (BIT), one of the most widely used antimicrobial agents in consumer products, has frequently been detected in the water environment. The present study was conducted to determine the adverse effects of BIT on the thyroid neuroendocrine system of zebrafish embryos/larvae. Rat pituitary (GH3) cell line was employed to support the underlying mechanism of thyroid hormone disrupting effects. Significant coagulation and hatching delay were observed in embryos exposed to 30 μg/L of BIT, which in turn remarkably decreased hatchability and larval survival. In BIT-exposed larvae, tshβ, tshr, and trh genes were significantly upregulated along with a decrease in thyroxine and triiodothyronine content, indicating that BIT decreased thyroid hormones and increased thyrotropin-releasing hormone and thyroid stimulating hormone secretion through a feedback circuit. The downregulation of trα and deio2 genes in the zebrafish larvae suggests the inhibition of thyroid hormone receptors and deiodination. Similar to the results in zebrafish, upregulation of tshβ and downregulation of trα, trβ, deio1, and deio2 genes were observed in GH3 cells. Our observations suggest that BIT can decrease the level of thyroid hormones by influencing central regulation, receptor binding, and deiodination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.114406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!