Phytohormones are supposed to contribute to the establishment of mutualistic Arbuscular mycorrhiza (AM) symbioses. However, their role in the acclimation of micropropagated plantlet inoculated with AM is still unknown. To address this question, we performed a hormone profiling during the acclimation of Satureja khuzistanica plantlets inoculated with Rhizoglomus fasciculatum. The levels of indoleacetic acid (IAA), methyl indole acetic acid, cis-zeatin, cis zeatin ribose, jasmonate, jasmonoyl isoleucine, salicylic acid, abscisic acid (ABA) were analyzed. Further, the relative gene expression of AOS (Allene oxide synthase) as a key enzyme of jasmonate biosynthesis, in either inoculated or non-inoculated micropropagated plantlets was evaluated during acclimation period. The concentrations of IAA and cis-zeatin increased in the plantlets inoculated by AM whereas the concentration of ABA decreased upon 60 days acclimation in the whole shoot of plantlets of S. khuzistanica. The relative expression of AOS gene resulted in an increase of isoleucine jasmonate, the bioactive form of jasmonate. Based on our results, IAA and cis-zeatin probably contribute to maintaining growth, and AM reduces transition stress by modifying ABA and jasmonate concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2022.153879DOI Listing

Publication Analysis

Top Keywords

micropropagated plantlet
8
satureja khuzistanica
8
plantlets inoculated
8
expression aos
8
iaa cis-zeatin
8
jasmonate
5
arbuscular mycorrhizal
4
mycorrhizal colonization
4
colonization leads
4
leads change
4

Similar Publications

Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of 'Carola'.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.

View Article and Find Full Text PDF

RITA Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Erben & Raimondo.

Plants (Basel)

December 2024

Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy.

Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of .

View Article and Find Full Text PDF
Article Synopsis
  • Micro-propagation is essential for mass-producing greenhouse orchids, but factors like culture media and cultivation systems affect efficiency and cost.
  • This study tested eight media on Phalaenopsis orchid mini-plantlets and focused on four effective media across different cultivation systems (semi-solid and various liquid formats).
  • Results showed that the SM2 medium significantly boosted growth due to its additives, high carbon content, and optimal cultivation in TIS-RITA, achieving better plant performance and reducing production costs by 61.6%.
View Article and Find Full Text PDF

The L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production.

View Article and Find Full Text PDF

Potential of some explants for callus induction and plantlet regeneration in L. under treatment of different plant growth regulators.

BioTechnologia (Pozn)

September 2024

Department of Botanical and Environmental Sciences, Guru Nanak Dev Universtiy, Amritsar, Punjab, India.

Plant growth regulators (PGRs) control signaling networks and developmental processes involved in plant responses to various biotic and abiotic stresses, making it crucial to study PGRs . The protocol for micropropagation of L., following callus induction and regeneration through explants such as internodal segments, leaves, and nodal segments, was established during the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!