Study Objectives: As in various brain regions the activity of gamma-aminobutyric acid (GABA) neurons is largely unknown, we measured in vivo changes in calcium fluorescence in GABA neurons in the zona incerta (ZI) and the ventral lateral periaqueductal grey (vlPAG), two areas that have been implicated in regulating sleep.
Methods: vGAT-Cre mice were implanted with sleep electrodes, microinjected with rAAV-DIO-GCaMP6 into the ZI (n = 6) or vlPAG (n = 5) (isoflurane anesthesia) and a GRIN (Gradient-Index) lens inserted atop the injection site. Twenty-one days later, fluorescence in individual vGAT neurons was recorded over multiple REM cycles. Regions of interest corresponding to individual vGAT somata were automatically extracted with PCA-ICA analysis.
Results: In the ZI, 372 neurons were identified. Previously, we had recorded the activity of 310 vGAT neurons in the ZI and we combined the published dataset with the new dataset to create a comprehensive dataset of ZI vGAT neurons (total neurons = 682; mice = 11). In the vlPAG, 169 neurons (mice = 5) were identified. In both regions, most neurons were maximally active in REM sleep (R-Max; ZI = 51.0%, vlPAG = 60.9%). The second most abundant group was W-Max (ZI = 23.9%, vlPAG = 25.4%). In the ZI, but not in vlPAG, there were neurons that were NREMS-Max (11.7%). vlPAG had REMS-Off neurons (8.3%). In both areas, there were two minor classes: wake/REMS-Max and state indifferent. In the ZI, the NREMS-Max neurons fluoresced 30 s ahead of sleep onset.
Conclusions: These descriptive data show that the activity of GABA neurons is biased in favor of sleep in two brain regions implicated in sleep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216876 | PMC |
http://dx.doi.org/10.1093/sleep/zsac306 | DOI Listing |
MicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.
View Article and Find Full Text PDFDiverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.
View Article and Find Full Text PDFIntroduction: Homeobox genes are highly conserved and play critical roles in brain development. Recently we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(Ala)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFCells
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!