We report a simple and facile integration strategy of a laser source in passive photonic integrated circuits (PICs) by deterministically embedding semiconductor nanowires (NWs) in waveguides. InP NWs laid on a SiN slab are buried by a polymer layer which also acts as an electron-beam resist. With electron-beam lithography, hybrid polymer-SiN waveguides are formed with precisely embedded NWs. The lasing behavior of the waveguide-embedded NWs is confirmed, and more importantly, the NW lasing mode couples into the hybrid waveguide and forms an in-plane guiding mode. Multiple waveguide-embedded NW lasers are further integrated in complex photonic structures to illustrate that the waveguiding mode supplied by the NW lasers could be manipulated for on-chip signal processing, including power splitting and wavelength-division multiplexing. This integration strategy of an on-chip laser is applicable to other PIC platforms, such as silicon and lithium niobate, and the top cladding layer could be changed by depositing SiN or SiO, promising its CMOS compatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c03364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!