Nanosized Shikonin-Fe(III) Coordination Material for Synergistic Wound Treatment: An Initial Explorative Study.

ACS Appl Mater Interfaces

State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.

Published: December 2022

Shikonin (Shik), a natural pigment, has received growing interest in various biomedical fields due to its anti-inflammatory, antitumor, antimicrobial, and antioxidant ability. However, some inherent characteristics of Shik, such as its virulence, low bioavailability, and poor solubility, have limited its biomedical applicability. Here, we reported a facile synthetic method to produce the Shik-iron (III) nanoparticles (Shik-Fe NPs), which could overcome these limitations of Shik. The synthesized Shik-Fe NPs possessed a uniform size range of 110 ± 10 nm, negative surface charges, good water dispersity, and high safety. Iron distributed uniformly inside Shik-Fe NPs, and iron constituted 20% of total mass in PEGylated Shik-Fe NPs. When interacting with activated macrophages, Shik-Fe NPs significantly reduced the level of cellular inflammatory factors, for example, iNOS, IL-1β, and TNF-α. Furthermore, the Shik-Fe NPs demonstrated synergistic anti-inflammation and anti-bacterial properties in vivo, since they could release Fe and Shik to eradicate bacteria ( and were used as model microbes here) during wound infections and provide full recovery for scald wounds. Collectively, the study established a dual-functional Shik-derived nanoplatform, which could be useful for the treatment of various inflammation-involved diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c16011DOI Listing

Publication Analysis

Top Keywords

shik-fe nps
24
shik-fe
6
nps
6
nanosized shikonin-feiii
4
shikonin-feiii coordination
4
coordination material
4
material synergistic
4
synergistic wound
4
wound treatment
4
treatment initial
4

Similar Publications

Nanosized Shikonin-Fe(III) Coordination Material for Synergistic Wound Treatment: An Initial Explorative Study.

ACS Appl Mater Interfaces

December 2022

State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.

Shikonin (Shik), a natural pigment, has received growing interest in various biomedical fields due to its anti-inflammatory, antitumor, antimicrobial, and antioxidant ability. However, some inherent characteristics of Shik, such as its virulence, low bioavailability, and poor solubility, have limited its biomedical applicability. Here, we reported a facile synthetic method to produce the Shik-iron (III) nanoparticles (Shik-Fe NPs), which could overcome these limitations of Shik.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!